

LINE Encryption Overview

Technical Whitepaper

October 28, 2019

Version 2.0

Copyright

Copyright© 2016 LINE Corporation. All Rights Reserved.

This document is an intellectual property of LINE Corp.; unauthorized reproduction or

distribution of this document, or any portion of it is prohibited by law.

This document is provided for informational purposes only. LINE Corp. has endeavored to verify

the completeness and accuracy of information contained in this document, but it does not take

the responsibility for possible errors or omissions in this document. Therefore, the responsibility

for the usage of this document or the results of the usage falls entirely upon the user, and LINE

Corp. does not make any explicit or implicit guarantee regarding this.

Software products or merchandises mentioned in this document, including relevant URL

information, conform to the copyright laws of their respective owners. The user is solely

responsible for any results occurred by not complying with applicable laws.

LINE Corp. may modify the details of this document without prior notice.

Document Information

About This Document

This document provides technical details about the encryption protocols and algorithms used

in LINE’s messaging and VoIP platform.

Audience

This document is intended for security engineers and developers with a strong

understanding of encryption technologies.

Contact Information

If you have any questions related to this document, or find any errors, please contact us at:

LINE Security Team (dl_secwhitepaper@linecorp.com)

Revision History

Ver. Date Changes made

1.0 2016-09-29 Initial Publication

2.0 2019-10-28 Update for Letter Sealing version 2

Table of Contents

1. Introduction ___________________________________ 5

2. Registration ___________________________________ 6

2.1 Account Creation __ 6

2.2 Email Address and Password Registration _______________________ 6

3. Client-to-Server Transport Encryption __________________ 7

3.1 Protocol Overview__ 7

3.1.1 Static Keys __ 7

3.1.2 Handshake Protocol __ 8

3.2 Application Data Encryption_________________________________ 9

3.3 Encryption Scope __ 10

4. Message End-to-End Encryption _____________________ 11

4.1 Letter Sealing Overview ____________________________________ 11

4.2 1:1 Message Encryption____________________________________ 12

4.2.1 Key Generation and Registration ___ 12

4.2.2 Client-to-Client Key Exchange __ 12

4.2.3 Message Encryption (version 1) __ 13

4.2.4 Message Encryption (version 2) __ 13

4.3 1:N (group) Message Encryption _____________________________ 14

4.3.1 Key Generation and Registration ___ 14

4.3.2 Message Encryption (version 1) __ 15

4.3.3 Message Encryption (version 2) __ 15

4.4 Encryption Scope __ 16

5. VoIP End-to-End Encryption ________________________ 17

6. Conclusion ____________________________________ 18

7. References ____________________________________ 19

5 / 19

This whitepaper provides technical details about the communication protocols and

encryption algorithms integrated into LINE’s messaging and VoIP platform. This document

focuses on LINE’s Android and iOS mobile clients. LINE clients on other platforms might

feature a slightly different implementation.

The protocols described in this document are integrated in LINE 6.7 and later. Version 2 of

Letter Sealing is integrated since LINE 8.15 for iOS mobile clients, since LINE 8.17 for

Android mobile clients, and since version 2.6 for LINE Lite clients.

We describe account registration, server-to-client encryption, and end-to-end encryption for

messaging and VoIP.

1. Introduction

6 / 19

2.1 Account Creation

In order to create a LINE account, users must have a valid phone number or a Facebook

account and register an account password. An email address can optionally be added to the

LINE account after registration.

Users start the account creation process by sending their phone number to LINE’s

registration server. The server generates a random 6-digit PIN code and sends it to the

specified number via SMS (IVR is also supported). Users verify ownership of the phone

number by entering the 6-digit code into the LINE client application, which passes it on to

the registration server. The server verifies the sent code and completes the registration if it

matches the originally sent value. Upon successful registration, the client receives a unique

user ID and an authentication key. The key is used to generate authentication tokens for all

subsequent requests.

2.2 Email Address and Password Registration

A password is required when creating a new LINE account. Users can optionally add an

email address to their LINE account. The email address and password are used for account

migration, login from desktop LINE clients, as well as for access to LINE’s Web-based

services.

When a user registers an email address and password, LINE sends a randomly generated 4-

digit verification code to the specified address. Users verify ownership of the email address

by entering the verification PIN code into the LINE application, or by clicking the verification

link included in the verification email on their mobile device. If verification is successful,

LINE authentication by email address and password is enabled for the user’s account.

2. Registration

7 / 19

3.1 Protocol Overview

The main transport protocol used in LINE mobile clients is based on SPDY 2.0 [1]. While the

SPDY protocol typically relies on TLS to establish an encrypted channel, LINE’s

implementation uses a lightweight handshake protocol to establish the transport keys used

for application data encryption.

Our handshake protocol is loosely based on the 0-RTT handshake in TLS v1.3 [2]. LINE’s

transport encryption protocol uses elliptic curve cryptography (ECC) with the secp256k1

curve [3] to implement key exchange and server identity verification. We use AES for

symmetric encryption and derive symmetric keys using HKDF [4].

We describe the protocol in more detail below.

3.1.1 Static Keys

In order to guarantee that clients only connect to legitimate LINE servers, we use static ECC

key pairs. LINE servers securely store the private part of each pair, while the corresponding

public keys are embedded in LINE client applications.

We use two types of static keys:

⚫ ECDH key pair for key exchange: (staticprivate, staticpublic)

⚫ ECDSA key pair for server identity verification: (signprivate, signpublic)

Because clients are pre-initialized with the static ECDH key described above, clients can

include encrypted application data in the first flight (0-RTT data).

3. Client-to-Server Transport

Encryption

September 29, 2016 Version 2.0

8 / 19

3.1.2 Handshake Protocol

The client and server exchange the following messages in order to establish the transport

key used to protect application data.

 Client Hello

1. Generate an initial ephemeral ECDH key and a 16-byte client nonce.

(c_initpublic, c_initprivate) = ECDHgenerate()

cnonce = randomsecure(16)

2. Derive a temporary transport key and initialization vector (IV) using the server’s static

key and the initial ephemeral key generated in 1. The key and IV are both 16 bytes long.

lenkey = 16

leniv = 16

sharedtemp = ECDH(c_initprivate, staticpublic)

MStemp =, HKDFextract(c_initpublic||cnonce, sharedtemp)

keyivtemp = HKDFexpand(MStemp, "legy temp key", lenkey + leniv)

keytemp = keyivtemp[0: 15]

ivtemp = keyivtemp[16: 31]

3. Generate an ephemeral ECDH client handshake key.

(cpublic, cprivate) = ECDHgenerate()

4. Encrypt cpublic and application data with keytemp and ivtemp. (See 3.2 for details about the

encryption method.).

dataenc = ENC(keytemp, ivtemp, cpublic||app data)

5. Send the following data to the server:

[statickey version, c_initpublic, cnonce, dataenc]

 Server Hello

1. Calculate the temporary transport key keytemp and IV ivtemp using the server’s static

ECDH key and the client’s initial ephemeral key.

sharedtemp = ECDH(staticprivate, c_initpublic)

MStemp = HKDFextract(c_initpublic||cnonce, sharedtemp)

keyivtemp = HKDFexpand(MStemp, "legy temp key", lenkey + leniv)

keytemp = keyivtemp[0: 15]

ivtemp = keyivtemp[16: 31]

2. Decrypt received application data with keytemp and extract cpublic.

3. Generate an ephemeral key pair and a 16-byte server nonce.

(sprivate, spublic) = ECDHgenerate()

September 29, 2016 Version 2.0

9 / 19

snonce = randomsecure(16)

4. Derive the forward-secure (FS) transport key and IV.

lenkey = 16

leniv = 16

sharedFS = ECDH(sprivate, cpublic)

MSFS = HKDFextract(cnonce||snonce, sharedFS)

keyivFS = HKDFexpand(MSFS, "legy fs key", lenkey + leniv)

keyFS = keyivFS[0: 15]

ivFS = keyivFS[16: 31]

5. Generate and sign the handshake state using the server’s static signing key.

state = SHA256(cpublic||cnonce||spublic||snonce)

statesign = ECDSAsign(state, signprivate)

6. Encrypt application data with keyFS and ivFS.

dataenc = ENC(keyFS, ivFS, app data)

7. Send the following data to client:

[spublic, snonce, statesign, dataenc]

 Client Finish

1. Verify the handshake signature. If the signature verifies, proceed to the next step. If not,

abort the connection.

valid = ECDSAverify(statesign, signpublic)

2. Derive keyFS and ivFS.

sharedFS = ECDH(cprivate, spublic)

MSFS = HKDFextract(cnonce||snonce, sharedFS)

keyivFS = HKDFexpand(MSFS, "legy fs key", lenkey + leniv)

keyFS = keyivFS[0: 15]

ivFS = keyivFS[16: 31]

3. Encrypt all subsequent application data using keyFS and ivFS.

After the handshake is complete, both client and server share a forward-secure symmetric

key keyFS and can create a secure channel for application data. Application data encryption

is described in the next section.

3.2 Application Data Encryption

Application data is encrypted with the 128-bit key keyFS using the AES-GCM [5] AEAD

cipher. Both client and server generate a unique nonce for each encryption operation. The

nonce is calculated by combining a client/server marker, a 64-bit sequence number numseq,

and the ivFS obtained in the handshake process.

September 29, 2016 Version 2.0

10 / 19

nonce = (marker ||numpseq) ⨁ ivFS

The sequence number is reset to zero each time the encryption key changes.

Application data is encrypted using the following algorithm:

dataenc = AESGCM(keyFS, nonce, app data)

3.3 Encryption Scope

Currently, only SPDY data frames are encrypted. Control frames in LINE’s transport protocol

do not carry any confidential information; they only include endpoint identifiers and

message metadata.

11 / 19

4.1 Letter Sealing Overview

Letter Sealing is the common name of all end-to-end encrypted (E2EE) protocols integrated

in LINE’s messaging and VoIP service. In this chapter, we focus on Letter Sealing as applied

to messaging. We discuss Letter Sealing for VoIP in Chapter 5.

LINE messages are locally encrypted on each client device before being sent to LINE’s

messaging server and can only be decrypted by their intended recipient. Letter Sealing is

applied only to message payloads, and message metadata (sender ID, recipient ID, and so

on) is not encrypted.

Several message data integrity issues were discovered in the first version of Letter Sealing

[6]. In order to solve these issues, Letter Sealing has been updated to version 2, which

guarantees stronger protection of messages. The new version of Letter Sealing also adds

integrity of message metadata.

Letter Sealing version 2 is used by default for 1:1 and 1:N messages when the sender’s

client supports it. If the recipient of a message does not support version 2, the protocol is

downgraded to Letter Sealing version 1, and the message is sent again.

The main cryptographic algorithms used in Letter Sealing for messaging, as well as the

supported data and metadata protection levels are listed in the following table.

 Version 1 Version 2

Key exchange algorithm ECDH over Curve25519 [7]

Message encryption algorithm AES-256 in CBC mode AES-256 in GCM mode

Message hash function SHA-256 N/A

4. Message End-to-End

Encryption

September 29, 2016 Version 2.0

12 / 19

Data authentication AES-ECB with SHA256 MAC AES-256 in GCM mode

Message data Encryption and integrity

Message metadata Not protected Integrity

4.2 1:1 Message Encryption

The following section describes Letter Sealing’s 1:1 message exchange protocol. Key

generation, registration, and client-to-client key exchange are similar between the two

versions of Letter Sealing. The message encryption protocols are different and are detailed

separately.

4.2.1 Key Generation and Registration

In order to be able to send encrypted messages, each LINE client application generates a

Letter Sealing ECDH key pair and saves it securely in the application’s private storage area.

The key pair is generated when the user first launches the LINE applications or when they

turn Letter Sealing back on after disabling it (Letter Sealing is enabled by default for current

mobile clients).

After generating the device key pair, each LINE client registers its public key with LINE’s

messaging server. The server associates the key with the currently authenticated user and

sends back a unique key ID to the client. Each key ID is bound to a specific user and

represents the current version of that user’s public key.

A new key is generated and registered each time the LINE application is reinstalled or when

the user migrates their account to a new device.

4.2.2 Client-to-Client Key Exchange

In order to be able to exchange encrypted messages, clients must share a common

cryptographic secret. When a LINE client wishes to send a message, it first retrieves the

current public key of the recipient. Next, the client passes its own private key and the

recipient’s public key to the ECDH algorithm in order to generate a shared secret. The

recipient generates the same shared secret using their own private key and the sender’s

public key, as shown below.

Shared Secret

= ECDHcurve25519 (keyprivate
user1 , keypublic

user2)

= ECDHcurve25519(keyprivate
user2 , keypublic

user1)

The above process is transparent to users. Users who want to make sure they are

communicating with the expected recipient can display the recipient’s public key fingerprint

and verify it out-of-band.

September 29, 2016 Version 2.0

13 / 19

4.2.3 Message Encryption (version 1)

LINE encrypts each message with a unique encryption key and IV. The encryption key and

IV are derived from the shared secret calculated in 4.2.2, and a randomly generated 8-byte

salt as follows:

salt = randomsecure(8)

Keyencrypt = SHA256(Shared Secret|| salt || "Key")

IVpre = SHA256(Shared Secret|| salt || "IV")

IVencrypt = IVpre[0: 15] ⨁ IVpre[16: 31]

The generated key and IV are used to encrypt the message payload M using 256-bit AES in

CBC block mode.

C = AESCBC(Keyencrypt, IVencrypt, M)

Next, LINE calculates a message authentication code (MAC) of the ciphertext C, as follows:

MACplain = SHA256(C)

MACenc = AESECB(Keyencrypt, MACplain[0: 15] ⨁ MACplain[16: 31])

Finally, the following data is included in the message sent to the recipient:

version content type salt C MAC sender key ID recipient key ID

The version and content type fields serve to identity the Letter Sealing version used to create

the message. Recipients use the sender key ID to retrieve the public key used to encrypt the

message. The recipient key ID value helps verify that the message can be decrypted using the

current local private key. Messages that target a previous key pair (such as one used before

migrating to the current device) cannot be decrypted. To facilitate device migration, LINE

clients automatically request recent messages targeting a previous key pair to be resent.

Once the recipient determines that they can decrypt a message, they derive the shared

secret, symmetric encryption key, and IV as described above. Next, LINE calculates the MAC

of the received ciphertext and compares it with the MAC value included in the message. If

they match, the contents of the message is decrypted and displayed. Otherwise, the

message is discarded.

4.2.4 Message Encryption (version 2)

When using Letter Sealing v2, LINE also encrypts each message with a unique encryption

key and a random nonce. The encryption key is derived from the shared secret calculated

from 4.2.2, and a 16-byte randomly generated salt. The nonce consists of an 8-byte per-chat

counter concatenated with a 4-byte randomly generated value. The process is as follows:

salt = randomsecure(16)

September 29, 2016 Version 2.0

14 / 19

Keyencrypt = SHA256(Shared Secret || salt || "Key")

nonce[12] = per_chatcounter[8] || randomsecure(4)

The generated key and the nonce are used to encrypt the message payload M using 256-bit

AES in GCM mode. As GCM is an authenticated encryption mode with associated data, it can

ensure data confidentiality and integrity. The message data is encrypted and authenticated,

and metadata are added as associated data for integrity enforcement. Metadata are the

recipient ID, the sender ID, the sender key ID, the recipient key ID, the Letter Sealing version,

and the content type. The output authentication tag is 16-byte long. The encryption process is

as follows:

AAD = receipient ID || sender ID || sender key ID || recipient key ID || version || content type

(C, tag) = AESGCM(Keyencrypt, nonce, M, AAD)

Finally, the following data is included in the message sent to the recipient:

version content type salt C || tag nonce sender key ID recipient key ID

The version, content type, the sender key ID and the recipient key ID are similar to those

included in version 1 messages. The difference comes from the ciphertext and the GCM tag

which are sent concatenated as one chunk of data, and the nonce which is added as a

separate chunk to the message.

Once recipients proceed to the decryption of the whole message, they first derive the

encryption key using their shared secret and the salt from the message. Then, they proceed

to decrypt the ciphertext with AES GCM mode, and provide the metadata of the message as

additional authenticated data. If the tag received from the sender matches the tag

computed during the decryption, the message can be displayed. Otherwise, the message is

discarded.

4.3 1:N (group) Message Encryption

Similarly to 1:1 messages, the difference between the two versions of Letter Sealing is only

in the message encryption process.

4.3.1 Key Generation and Registration

In order to implement 1:N encrypted chats, LINE generates a shared group key

Sharedkeygroup, which is then securely distributed to all group members. The group key is

typically generated by the first member that wants to send a message to the group.

To associate a group key with a group, LINE first generates a new ECDH key pair. The

private part serves as the group’s shared key. LINE then retrieves the public keys of all

current group members and calculates a set of symmetric encryption keys using the current

September 29, 2016 Version 2.0

15 / 19

user’s private key and each group member’s public key. The key derivation process is the

same for 1:1 chats, as described in 4.2.1 and 4.2.2. Next, the group shared key is

encrypted individually with each of the generated symmetric keys, and the encrypted data is

sent to the messaging server. The server associates the encrypted group keys with the

group and returns the current shared key ID.

When members join or leave the group, a new group shared key is generated and

associated with the group.

4.3.2 Message Encryption (version 1)

When group members want to send a message to the group, they first retrieve the

encrypted Sharedkeygroup, decrypt it, and cache it locally. To send a message, each member

derives an encryption key and IV, using the group’s shared key and their own public key as

input. The process is similar to the one used for 1:1 chats with version 1 and is presented

below.

Shared Secretgroup = ECDHcurve25519(Sharedkeygroup, keypublic
sender)

salt = randomsecure(8)

Keyencrypt = SHA256(Shared Secretgroup|| salt || "Key")

IVpre = SHA256(Shared Secretgroup|| salt || "IV")

IVencrypt = IVpre[0: 15] ⨁ IVpre[16: 31]

Message data is encrypted and formatted as described in 4.2.3, with the only difference that

the recipient key ID field is replaced with the key ID of the group’s shared key.

4.3.3 Message Encryption (version 2)

For 1:N encryption with version 2, the Sharedkeygroup is computed as described in 4.3.1.

When group members want to send a message to the group, they retrieve the

Sharedkeygroup from the server, decrypt it, and cache it locally. To send a message, a group

member derives an encryption key by using the group shared key, and their own public key.

The process is similar to 1:1 chats with the version 2 and is presented below.

Shared Secretgroup = ECDHcurve25519(Sharedkeygroup, keypublic
sender)

salt = randomsecure(16)

Keyencrypt = SHA256(Shared Secretgroup || salt || "Key")

nonce[12] = per_chatcounter[8] || randomsecure(4)

Message data is encrypted and formatted as described in 4.2.4, with the difference that the

recipient key ID field is replaced with the key ID of the group’s shared key.

September 29, 2016 Version 2.0

16 / 19

4.4 Encryption Scope

Letter Sealing is currently applied to text messages and location messages.

17 / 19

In addition to message encryption, LINE also supports end-to-end encryption for free VoIP

calls. Keys for VoIP traffic encryption are established using the ECDH key exchange

algorithm. The curve used in LINE’s VoIP encryption protocol is secp256r1 [3].

To start a call, the caller generates a new ephemeral key pair and sends it to the callee as

part of the call request. After the callee receives the call request, they generate their own

ephemeral key pair and send it back to the caller. User identity is guaranteed by the

signaling server which signs call setup messages with a static key whose public part is

embedded in LINE clients.

After both parties’ exchange keys, they generate a master secret, and derive a VoIP session

key and salt as follows:

SecretMaster

= ECDHsecp256r1(Ephemeral keyprivate
caller , Ephemeral keypublic

callee)

= ECDHsecp256r1(Ephemeral keypublic
caller , Ephemeral keyprivate

callee)

KeyVoIP = HMACSHA512(SecretMaster, KeyCall)[0: 15]

SaltVoIP = HMACSHA512(SecretMaster, KeyCall)[16: 29]

Here KeyCall is a unique call ID, randomly generated at call initiation. KeyVoIP and SaltVoIP

serve as the master key and master salt used to initialize SRTP[8], respectively. Both audio

and video media streams are encrypted using the AES_CM_128_HMAC_SHA1_80 crypto-

suite[9].

5. VoIP End-to-End Encryption

18 / 19

Messaging traffic between LINE clients and our servers is protected with forward-secure

encryption, and both text messages and media streams in VoIP calls are end-to-end

encrypted. Our end-to-end encryption protocols ensure that neither third parties, nor LINE

Corporation can decrypt private calls and messages between users; encrypted

communication can only be decrypted by the intended recipient.

6. Conclusion

19 / 19

[1] M. Belshe, R. Peon, et al., "SPDY Protocol - Draft 2",

https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft2

[2] E. Rescorla, "Transport Layer Security (TLS) Protocol Version 1.3",

https://tools.ietf.org/html/draft-ietf-tls-tls13-16

[3] Standards for Efficient Cryptography Group, "SEC 2: Recommended Elliptic Curve Domain

Parameters", January 2010. Version 2.0,

http://www.secg.org/sec2-v2.pdf

[4] H. Krawczyk and P. Eronen, "HMAC-based Extract-and-Expand Key Derivation Function

(HKDF)", RFC 5869, May 2010,

http://www.rfc-editor.org/info/rfc5869

[5] D. McGrew and J. Viega., "The Galois/Counter Mode of Operation (GCM)". Manuscript, May

2005, Available from the NIST website.

[6] Isobe T., Minematsu K., "Breaking Message Integrity of an End-to-End Encryption Scheme

of LINE.", Cryptology ePrint Archive: Report 2018/668

[7] D. J. Bernstein, "Curve25519: new Diffie-Hellman speed records", Proceedings of PKC

2006, February 2006

[8] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, "The Secure Real-time

Transport Protocol (SRTP)", RFC 3711, March 2004,

http://www.rfc-editor.org/info/rfc3711

[9] F. Andreasen, M. Baugher, D. Wing, "Session Description Protocol (SDP) Security

Descriptions for Media Streams ", RFC4568, July 2006,

https://www.rfc-editor.org/info/rfc4568

7. References

https://www.rfc-editor.org/info/rfc4568

	1. Introduction
	2. Registration
	2.1 Account Creation
	2.2 Email Address and Password Registration

	3. Client-to-Server Transport Encryption
	3.1 Protocol Overview
	3.1.1 Static Keys
	3.1.2 Handshake Protocol
	I. Client Hello
	II. Server Hello
	III. Client Finish

	1.1
	3.2 Application Data Encryption
	3.3 Encryption Scope

	4. Message End-to-End Encryption
	4.1 Letter Sealing Overview
	4.2 1:1 Message Encryption
	4.2.1 Key Generation and Registration
	4.2.2 Client-to-Client Key Exchange
	4.2.3 Message Encryption (version 1)
	4.2.4 Message Encryption (version 2)

	1.1
	4.3 1:N (group) Message Encryption
	4.3.1 Key Generation and Registration
	4.3.2 Message Encryption (version 1)
	4.3.3 Message Encryption (version 2)

	1.1
	4.4 Encryption Scope

	5. VoIP End-to-End Encryption
	6. Conclusion
	7. References

