
Traceback for End-to-End Encrypted Messaging
Nirvan Tyagi

Cornell University

Ian Miers

Cornell Tech

University of Maryland

Thomas Ristenpart

Cornell Tech

ABSTRACT
Messaging systems are used to spread misinformation and other

malicious content, often with dire consequences. End-to-end en-

cryption improves privacy but hinders content-based moderation

and, in particular, obfuscates the original source of malicious con-

tent. We introduce the idea of message traceback, a new crypto-

graphic approach that enables platforms to simultaneously provide

end-to-end encryption while also being able to track down the

source of malicious content reported by users. We formalize func-

tionality and security goals for message traceback, and detail two

constructions that allow revealing a chain of forwarded messages

(path traceback) or the entire forwarding tree (tree traceback). We

implement and evaluate prototypes of our traceback schemes to

highlight their practicality, and provide a discussion of deployment

considerations.

ACM Reference Format:
Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. 2019. Traceback for End-

to-End Encrypted Messaging. In 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19), November 11–15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 19 pages. https://doi.org/10.

1145/3319535.3354243

1 INTRODUCTION
Over a billion people communicate using end-to-end (E2E) en-

crypted messaging on platforms like WhatsApp [5], Signal [2],

and Telegram [3]. Unfortunately, these platforms are being increas-

ingly used for viral misinformation campaigns [19, 22, 23] in which

parties send messages with misleading or false information, and

encourage them to be forwarded by the recipient. Such campaigns

have serious consequences, examples include lynchings [22] and

impact on democratic elections [19].

In unencrypted contexts, such as Twitter or the Facebook news

feed, platforms have started to combat misinformation campaigns

with content moderation, tracing harmful messages sent through

their network and intervening as deemed appropriate, e.g., by

banning the “factory” accounts that are injecting such content

into the network. But E2E encryption complicates moderation be-

cause the platform never observes plaintext content. Message frank-

ing [13, 14, 17] allows cryptographically verified content modera-

tion, but current techniques only reveal the sender of a received

message and do not by themselves help identify the source of a

forwarded message. Platforms have so far relied solely on crude

techniques like limiting the number of people to which anymessage

can be forwarded [33].

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November 11–15, 2019,
London, United Kingdom, https://doi.org/10.1145/3319535.3354243.

In this paper, we initiate the study of tracing for E2E encrypted

messaging. At a high level, tracing should allow users to report an

abusive message along with supporting cryptographic key material

to the messaging platform. Using this material, the platform can re-

cover a cryptographically verifiable trace of the message, revealing

the source and how the message was forwarded between users.

The first challenge is pinning down achievable and useful secu-

rity goals for tracing. A priori it is unclear what tracing can provide

in the presence of malicious users (with compromised clients). For

example, it seems possible for a malicious user to “partition” the

traceback by avoiding a built-in forwarding mechanism (thereby

tricking the service into thinking it’s a new message). We identify

achievable goals for trace accountability, which, at a high level, en-

sure that no honest user can be erroneously implicated in sending,

receiving, or forwarding a message. Thus tracing will always iden-

tify as the source either the true author of a message or a malicious

user who partitioned the trace, a goal we formalize.

The second challenge is achieving accountable tracing with mini-

mal impact on the E2E confidentiality goals of encrypted messaging.

Inmost encryptedmessaging systems, the platform learns that some

message is being sent from one user to another, but never learns

about plaintext content nor whether a message is a forward. We

want to preserve these goals, with the exception that, when a mes-

sage is reported, that message’s plaintext and forwarding chain is

revealed. Importantly, our security goals mandate that unreported

messages retain privacy. We additionally want traceback schemes

that provide third-party deniability (only the platform can crypto-

graphically verify messages sent), a confidentiality goal explicitly

sought by encrypted messaging systems [14].

We design two traceback schemes. The first, called path trace-

back, uses lightweight symmetric encryption techniques to add

specially constructed tracing tags to ciphertexts. A tracing tag is

an encrypted pointer to either the prior message, in the case of a

forward, or a distinguished symbol in the case of a freshly authored

message. The ability to decrypt the tracing tag is secret-shared

across the platform and the recipient, so that only when a recipient

reports the message can the platform decrypt the tracing tag and

reveal information about forwards. By carefully ensuring that sub-

sequent forwards’ tracing tags form an encrypted linked list, the

platform can, given an abuse report, trace back to the source of the

message content.

Our second scheme is called tree traceback. It extends path trace-

back to additionally allow tracing forward from the original source

to recover all the recipients of forwards of the message content.

Tree traceback could be useful to platform operators when miti-

gating and cleaning up after abuse, since it allows, for example,

identifying the victims of misinformation campaigns. Achieving

it is more complicated, however, in particular because we want

to build an encrypted tree data structure incrementally, allowing

https://doi.org/10.1145/3319535.3354243
https://doi.org/10.1145/3319535.3354243
https://doi.org/10.1145/3319535.3354243

tracing to connect all forwards of a message, including ones that

will happen in the future. We nevertheless show how to achieve it.

Our two schemes are practical to deploy. By design, they work

with arbitrary E2E encryption systems. They utilize only fast sym-

metric encryption and cryptographic hashing, and add a small

number of bytes to each encrypted message. The schemes do re-

quire that the platform store a short trace tag (<100 bytes) for each

encrypted message sent, which is nevertheless practical even for

high-volumemessaging systems.We implement a prototype of both

of our schemes, report on initial performance evaluation, and detail

how traceback can be easily integrated into existing E2E encryption

protocols such as Signal [2].

In summary, our contributions are as follows:

• We introduce the notion of traceback for E2E encrypted mes-

saging. We detail a formalization of tracing schemes and as-

sociated security goals, including various confidentiality and

accountability goals.

• We design two secure tracing schemes, enabling tracing the

path of a message or, additionally, the entire forwarding tree.

We give formal analyses showing these schemes meet our

security goals.

• We report on and open-source a prototype implementation of

our constructions, and show how they can be easily integrated

into existing E2E encryption systems.

2 SETTING AND GOALS
We consider an E2E encrypted message setting, in which a plat-
form helps users send encrypted messages. A primary goal of such

messaging services is confidentiality of user messages. While some

industry [21] and academic [31, 32, 34] systems also target metadata

privacy, i.e., obfuscating from the platform who is the sender or re-

cipient (or both), we restrict attention to systems such as Facebook

secret messenger, Whatsapp, and Signal (without the sealed sender

feature) that reveal such metadata to platforms.

Some messaging clients allow forwarding of encrypted messages

though others have not yet deployed forwarding features.
1
While

forwarding is beneficial to legitimate users, it has also been subject

to abuse by users spreading malicious content [19, 22]

In this work, we show how to augment encrypted messaging

systems to allow users to report a malicious message. The platform

can, given this report, trace the path a message took as it was for-

warded across the network of users. This enables new moderation

approaches, as we discuss more at the end of this section. We first

discuss our confidentiality and accountability goals in more detail.

Confidentiality goals. We want to support traceback while min-

imizing impact on E2E confidentiality guarantees. Messages and

forwarding behavior (whether an encrypted message is a forward,

and from whom) should be confidential even from the platform,

except in the case that the message was reported. For non-reported

messages, neither the platform nor users should ever learn anything

new due to the tracing functionality. In particular, we want:

1
Signal allows forwarding with no indication the message is a forward, WhatsApp in-

cludes an indicator, and iMessage, Telegram, and Facebook Messenger do not currently

support forwarding in encrypted chats.

• Trace confidentiality for users: Users should not learn any

information about message paths beyond their local view of

receiving and sending messages.

• Pre-report trace confidentiality for platform: Before a report,

the platform should not learn any additional information

about the message path beyond communication metadata

(e.g., receiver, sender, timing, message length).

• Post-report trace confidentiality for platform: After a report,

the platform should learn the message trace and nothing more.

These confidentiality goals emanate from our intention to hew

closely to the existing behavior and privacy offered by deployed

E2Emessaging systems. First, we have chosen to ensure that tracing

does not reveal to even a malicious user if they are receiving a

forwarded message or a fresh one. Here, deployed systems take

different approaches and we chose the approach that maximizes

compatibility. Whatsapp reveals to the recipient that a message is a

forward, but does not reveal from whom [33]. Signal, in contrast,

does not identify forwarded messages. By providing forwarding

privacy, our tracing schemes work in both contexts.

Second, we have chosen to explicitly reveal messaging meta-data.

This means the platform can tell that A communicated with B who

then communicated with C . Our second choice is to conceal from

the platform whether B sent a fresh message to C or forwarded

the message they got from A. Together these choices preserve the
general property of E2E encrypted messaging systems such as

WhatsApp and iMessage: the platform learns who messages who

but nothing about the content of the message.

Traffic analysis by a (compromised or otherwise malicious) plat-

form may allow inferring forwarding behavior. For example, if the

platform observes a single 125 byte inbound message to some user

followed shortly after by 20 outbound messages of size 125 bytes,

it is likely a sequence of forwards. We will not attempt to prevent

such traffic analysis, which would require expensive padding and

timing obfuscations.

Finally we note that our schemes will not interfere with cryp-

tographic deniability. In the messaging setting, this refers to the

idea that recipients should not be able to provide to a third party

cryptographic evidence proving that the sender sent a particular

plaintext. For example, providing a recipient with a digital signa-

ture of a plaintext using the sender’s private key would violate

our goals. Deniability was explicitly sought by Facebook’s message

franking system [14], and by using symmetric primitives we will

achieve whatever level of deniability is offered by the underlying

E2E encryption mechanisms.

Accountability goals. In this paper, we propose two different

types of traceback. The simplest form is path tracebackwhich allows
a platform to trace a reported message back to its origin, identifying

every forward along the path. This allows the originator to be

held accountable for a message that is forwarded. Separately, we

consider tree traceback, which allows messages to be traced both

back to their origin and to identify all forwards of the message.

This enables not only the identification of the sender, but also of

recipients. It may be useful for helping notify users about malicious

content, or blocking further forwards of the message. A particular

complication for tree traceback is that the platform should be able

(a) Forwarding paths (b) Pre-report view

(d) Path traceback (e) Tree traceback(c) Message franking

Figure 1: Example of message forwards and what different trace-
back mechanisms report. Nodes are users and edges are message
sends, with forwarding paths denoted in the same color. Subfigures
(c), (d), and (e) depict what is revealed to the platformwhen the blue
message is reported by the user indicated by the red circle.

to trace all forwards including those that occur after the report is

made. A visualization of the different traceback policies are shown

in Figure 1. Shown also there is what message franking [13, 14, 17]

supports in terms of accountability. Our path and tree traceback

can be seen as generalizations of message franking.

As was done previously with message franking, we want to en-

sure various accountability properties even in the face of malicious

users. But our setting is more complicated because tracing requires

reasoning about multiple messages sent, as opposed to a single

one. Intuitively, we require that no colluding set of adversarial

users can frame an honest user as having performed some action

(sending, receiving, or forwarding a message with some particular

plaintext content) that they did not, in fact, perform. This implies,

for example, the following accountability goals:

• Trace unforgeability: No group of colluding users can generate
a report implicating an honest user as having performed an

action they did not, in fact, perform.

• Sender binding: No user can author a message that cannot be

traced back to them.

Note that trace unforgeability can be seen as a generalization of

the receiver binding property targeted by message franking.

There are some limits to the level of accountability that we target

(and that our eventual schemes will provide). In particular, we allow

for malicious users to partition the traceback. In these “partition

attacks”, a malicious user can split a forwarding chain so as to

make themselves appear as the end of one side of the split and

the source of the other side. This seems fundamentally unavoid-

able. Consider that a malicious user can bypass the cryptographic

forwarding mechanism and emulate a forward by resending a mes-

sage via a copy-paste of the received plaintext. In theory, the client

software could be modified to flag such copy-paste forwards by

comparing incoming and outgoing plaintexts (after decryption and

before encryption, respectively). Detection is not straightforward,

particularly if one wants it to be robust to small changes in the

message (see Section 8 for more discussion). Moreover, this kind

of defense relies upon the integrity of the client software, as an

adversary using a compromised client can avoid client-side detec-

tion logic and directly submit encrypted content to the platform. In

Section 8, we discuss how future work might target prevention of

partition attacks despite compromised clients through the use of

more heavyweight tools such as trusted hardware and expensive

zero-knowledge proofs.

For the purposes of this work, we require only that a malicious

user will be left holding “both ends” of a partitioned chain. That is,

there will be a trace including the malicious user as having received

the original message and a (possibly different) trace including the

malicious user as having sent the message. In the end, this means

that we will guarantee messages will be traceable either to the

original source or to a malicious user that partitioned the chain.

The effectiveness of tracing. A final question arises: if it is pos-

sible for a user to bypass our proposed tracing protections via a

hacked client, is tracing effective? We believe so. Abuse mitigation

techniques need not be perfect to be effective, and even just reduc-

ing the amount of abuse is worthwhile. There is empirical evidence

that protections that can be bypassed even by simple copy-paste

behavior can still be effective. WhatsApp ran an experiment on the

effectiveness of limiting the number of forwards a user could make

of a given message. They found that this was effective despite the

fact that the user could circumvent the limit after they reached it

by simply copy and pasting the message. As a result, this forward

limitation is now deployed globally [33].

Deployment, policy, and ethical considerations. Tracing can

be used to identify the source of malicious or harassing messages.

But like most technologies for content moderation, the same tools

are at risk of use for silencing whistleblowers, activists, or others

producing socially valuable content. Once the source account of a

message is identified, they may face reprisals. We therefore believe

care should be taken when deploying tracing schemes lest they

themselves become abused by authoritarian regimes or others.

A material difference between tracing and prior approaches is

that a reporter can implicate people with whom they did not di-

rectly communicate (i.e., the source of the message). Platforms can

deploy appropriate policies and cryptographic safeguards in order

to prevent abuse of the additional tracing functionality. We envi-

sion an architecture in which automated and human moderator

pipelines can be used to first decide whether tracing functionality

should be used on reported content. Policy could dictate use of

tracing only in appropriate cases (e.g., terrorist propaganda, child

pornography) versus other reported content for which less drastic

actions than tracing might suffice (e.g., punitive measures against

the immediate sender). Platform policy could also dictate deleting

the tracing ciphertexts needed to perform traceback after some

specified period of time. The challenge of developing such policies

and building moderator pipelines that can enact them will need

future research; we focus on showing the cryptographic viability

of performing secure tracing when it is appropriate.

3 TRACING SCHEMES
In this section, we present the syntax and semantics we will use to

describe message tracing schemes.

We assume users U1,U2, . . . ,Un each represented by a unique

identifier taken from some setU. For convenience later, we assume

a distinguished user identifier ⊥ that no real user can use. We make

minimal assumptions on user identities, assuming only that they

are unique and that the platform can authenticate them. In practice

one will use the identifiers already used in E2E messaging systems.

We use the termmessage to refer to the sending of some plaintext

from one user to another at some point in time. Multiple messages

may have the same plaintext (e.g., because someone forwards mes-

sage plaintext or sends the same message to multiple people). The

distinction between message and plaintext will be particularly crit-

ical in our discussion of tracing scheme accountability properties

(Section 5.2).

Our formalization of a message tracing scheme is decoupled from

the underlying end-to-end encryption. This leads to a modular and

flexible deployment path in that any message tracing scheme can

be used in conjunction with any (non-metadata-private) end-to-end

encryption algorithm.

A message tracing scheme MT = (NewMsg, TagGen, RecMsg,
Svr-Process, Svr-Trace) is a tuple of algorithms. The first three

algorithms are called by userswhen sending and receivingmessages.

The last two algorithms are for the platform to trace messages given

the proper user-provided key material.

• tmd←$ NewMsg(U , p): The randomizedmessage authorship

algorithm takes in a user, a message plaintext, and outputs

trace metadata to be associated with this particular authored

message instance.

• (k, tts) ←$ TagGen(Us ,Ur , p, tmd): The randomized tag gen-

eration algorithm takes in the sender Us and recipient Ur

identities, a message plaintext, and trace metadata. The algo-

rithm outputs a sender trace tag tts and tracing key k. The
tracing key is to be included with the plaintext in the end-to-

end encrypted ciphertext which is sent along with the sender

trace tag to the recipient over the platform.

• tmd ← RecMsg(k,Us ,Ur , p, ttr): The tag receive algorithm

takes in a key, the sender Us and recipient Ur identities, a

message plaintext, and a recipient trace tag, then outputs

trace metadata that cryptographically identifies the received

message. The algorithm may return an error symbol ⊥ (e.g.,

in the case ttr is malformed).

• ((mid, ttp), ttr) ←$ Svr-Process(stsvr,Us ,Ur , tts): The server
processing algorithm takes in the server state, the sender and

receiver identities, and a sender trace tag. It outputs a recipi-

ent trace tag ttr to deliver to the recipient as well as a message

identifier mid and a platform trace tag ttp . In our schemes,

the server updates stsvr, which is a simple key-value store, to

include (mid, ttp).

• tr ← Svr-Trace(stsvr,U , p, tmd): A user can report a received

message by sending the plaintext p and trace metadata for the

message to the platform. The server tracing algorithm takes

in the server state, the reporting user identity, the message

plaintext, and trace metadata. It then returns a trace tr of the

U1

Platform

stsvr
U2

tts ttr

p, tmd
mid, ttp

p, k
1

2

3

4

5

6

1. Select message to send:
a. If authoring new message, tmd←$ NewMsg(U1, p).
b. If forwarding message, tmd ← RecMsg(k′, U0, U1, p, tt′r).

2. Generate trace tag: Us generates tracing key and sender trace tag.

The tracing key and plaintext are end-to-end encrypted and sent

along with the trace tag, (k, tts) ←$ TagGen(U1, U2, p, tmd).

3. Process trace tag: Platform logs a message identifier and

tracing data ttp , and derives recipient trace tag ttr for U2,

((mid, ttp), ttr) ←$ Svr-Process(st, U1, U2, tts).

4. Receive trace tag: Recipient decrypts end-to-end ciphertext and

with received trace tag generates trace metadata for future forwards

and reports of message, tmd ← RecMsg(k, U1, U2, p, ttr).

5. Report message: Recipient sends message plaintext and trace meta-

data to platform, p, tmd.

6. Trace message: Platform learns trace of message associated with

reported trace metadata, tr ← Svr-Trace(stsvr, U2, p, tmd).

Figure 2: Usage of message tracing algorithms. Solid arrows repre-
sent values passed to and handled by the platform. The dotted arrow
represents the end-to-end encrypted channel between users.

reported message instance, the detailed structure of which

depends on the tracing goal. For path traceback it corresponds

to a path with nodes labeled by users and edges labeled by

message identifiers. For tree traceback, a similarly-labeled

tree is returned.

Usage. The algorithms for tracing described above are designed to

be decoupled from the end-to-end encryption algorithms used by

the messaging platform. A typical message is sent in the following

manner, depicted in Figure 2. First, the sender must specify the

message they wish to send, i.e., whether it is a new message or a

forward. In either case we want to associate some trace metadata

to the message. If the user authors their own message, this meta-

data is created using NewMsg. Otherwise, RecMsg generates trace

metadata for a previously received message that can be used when

forwarding. To send a message, the sender generates a tracing key

k and a sender trace tag tts using TagGen with the appropriate

trace metadata. The sender encrypts the tracing key and message

plaintext using the E2E encryption protocol, and sends the resulting

ciphertext along with tts to the platform.

The platform processes tts using Svr-Process, updating its inter-
nal state to log a message identifiermid and associated platform

trace tag ttp . Note that ttp does not necessarily equal tts . It also

derives a recipient trace tag ttr and sends the E2E ciphertext and

ttr to the recipient. The recipient decrypts the ciphertext to recover
the tracing key k and plaintext, and then uses RecMsg to both ver-

ify the received trace tag and generate the trace metadata that can

be used to forward the message in the future. The recipient may

report a message to the platform by sending the message plaintext

and associated trace metadata to the platform. The platform uses

Svr-Trace with its internal state to learn a trace of the reported

message instance.

Correctness. Informally, correctness dictates that trace tags cre-

ated with honest calls to NewMsg, TagGen, and RecMsg and pro-

cessed by an honest platform using Svr-Process should (1) not fail

well-formedness verification in RecMsg, and (2) provide the correct
trace with Svr-Trace when reported. Correctness is therefore con-

text dependent, and we will discuss it more in subsequent sections.

We just note that most of our schemes will not be perfectly correct,

but rather be correct with all but negligible probability.

Preliminaries. Our schemes will make use of a collision-resistant

pseudorandom function (CR-PRF), which we will denote as F . A
CR-PRF F : K × X → Y is defined over a key space K , input

space X, and output space Y. We will make use of two security

properties of CR-PRFs. Pseudorandomness ensures the CR-PRF acts

as a random function when its key remains secret, and collision

resistance means it is hard to find key, input pairs that evaluate to

the same output. The formalization of these security properties is

deferred to the appendix, given in Figures 12 and 15. In the body,

we will often drop the prefix and simply refer to F as a PRF.

4 PATH TRACEBACK
We start with path traceback. The goal is to allow reporting a

message with plaintext p, with the platform then able to identify

the sequence of forwarded messages back to the original author

of p. In this case, Svr-Process outputs a trace

tr = (tr1,mid1,2, tr2,mid2,3, tr3, . . . ,midτ−1,τ , trτ)

where τ is called the trace length and each tri ∈ U identifies a user

and eachmidi, j is an identifier for a message. These message iden-

tifiers correspond to the ones output by the platform tag processing

algorithm (Svr-Process), allowing the platform to store, and later

recover during traceback, any desired metadata associated with

a sent message. This can be visualized as a directed graph where

nodes are associated to users and edges to messages. The trace can

then be denoted via

p : tr1
mid

1,2
−→ tr2

mid
2,3
−→ · · ·

midτ−1,τ
−→ trτ

where p represents the plaintext traced and the arrow diagram the

path.

As discussed in Section 2, an adversarial user can always obfus-

cate the source from which they received a message by a partition

attack, in which case path traceback will result in identifying the

first misbehaving user (from the end) as the originator. For example,

if tr2 behaved maliciously, they can deviate from the proper client

implementation and prevent traceback from identifying tr1, and
instead tr2 would be considered the source of the message.

The linked tags scheme. Each message sent between two users

is associated with amessage identifier, denoted bymid. Themessage

identifier is chosen by the sender, who samples a random tracing
key k and calculates the message identifier as the output of a PRF

on the plaintext, Fk (p). In this manner, the message identifier also

acts as a commitment to the plaintext, and the tracing key acts as

an opening key. Looking forward, our trace unforgeability property

will rely on the collision resistance of the PRF to bind message

identifiers to a plaintext and tracing key. To link the message as

a forward of a previous message, the sender also encrypts the

previous message’s tracing key with the tracing key for the new

message. If the message is not a forward, the sender samples and

encrypts a random value. This ciphertext acts as an encrypted

pointer to the previous message’s identifier. The current message

identifier and the encrypted pointer are sent to the platform and

are stored in a key-value table in server state, keyed by the message

identifier. The platform sends the message identifier to the recipient,

who verifies the commitment is well-formed with respect to the

tracing key and plaintext before accepting the message.

Traceback is then simply a matter of decrypting and following

the pointers between message identifiers in server state. Given a

report consisting of a tracing key kτ and plaintext p, the platform
will lookup midτ−1,τ = Fkτ (p) in server state and decrypt the

encrypted pointer to learn the tracing key kτ−1. Tracing key kτ−1
is in turn used to lookup midτ−2,τ−1 = Fkτ−1 (p), the previous

message in the forwarding chain. The chain ends when a lookup

of k1 fails, i.e., the value mid = Fk1 (p) is not found in the server

state. Pseudocode for the construction and a diagram of one step of

traceback is given in Figure 3.

Our scheme can be thought of as a sort of secret share between

the platform and the recipient. The recipient gets the tracing key

and the plaintext, while the platform gets the ciphertext containing

the previous message’s tracing key. User trace confidentiality is

preserved from the recipient’s share as it has no dependence on

the previous message. Platform trace confidentiality is preserved

from the platform’s share as the message identifier and ciphertext

appear as random bytes without knowledge of the tracing key. The

two shares combined allow for the previous message’s tracing key

to be decrypted and traceback to proceed.

The linked tags scheme provides path traceback cheaply. It does

require O(m) storage at the platform for m the total number of

messages sent by users. But storage is relatively cheap, and this

is a write-heavy workload, potentially allowing cheaper storage

options. Of course, the platform can expunge tracing tags after a

predefined time (e.g., one week or one month), allowing tracing in

the interim but not after. This may be preferable since it improves

confidentiality in the long term, but still allows platforms to respond

to pressing issues such as an ongoing misinformation campaign

targeting candidates within an election.

5 SECURITY OF PATH TRACEBACK
5.1 Confidentiality
We start by formalizing notions of security capturing our confi-

dentiality goals. Recall that our confidentiality goals include: (1)

trace confidentiality from the platform, meaning the platform learns

nothing about message contents or message history unless a report

NewMsg(U, p):

k←$ {0, 1}n

return k

TagGen(Us, Ur, p, ki−1):

ki ←$ {0, 1}n

k̃i ← H (ki)
mid ← Fki (p)
ct ← Enc

k̃i
(ki−1)

tts ← (mid, ct)
return (ki , tts)

RecMsg(ki , Us, Ur, p, ttr):

mid ← ttr
if mid , Fki (p) : return ⊥
return ki

Svr-Process(PT, Us, Ur, tts):

(mid, ct) ← tts
if mid ∈ PT : return ⊥
ttp ← (ct, Us, Ur)

ttr ← mid

return ((mid, ttp), ttr)

Svr-Trace(PT, U, p, k):

init list Tr; i ← 0

Tr[i] ← U

mid ← Fk (p)
while mid ∈ PT :

(ct, Us, Ur) ← PT[mid]

if Ur , Tr[i] : break
Tr[i + 1] ← mid; Tr[i + 2] ← Us

k̃ ← H (k); k ← Dec
k̃
(ct)

mid ← Fk (p)
i ← i + 2

return Tr−1

U1 U2 U3

mid1,2 mid2,3

PT

mid2,3 Enck̃
2,3
(k1,2) U2 U3

...

mid1,2 Enck̃
1,2
(k∅) U1 U2

Fk
2,3 (p)

Fk
1,2 (p)

sent message

traceback

Figure 3: Linked tags construction for path traceback. The diagram
shows one step of traceback propagation. Solid arrows denote sent
messages, while dashed arrows denote the propagation of traceback
from blue to purple given the tracing key for blue, k2,3.

implicates that message, and (2) trace confidentiality from users,

meaning a user learns nothing about the history of messages they

receive. We therefore formalize two notions of confidentiality.

Our confidentiality definitions isolate what might leak from the

output of a specific honest node, even for adversarially chosen keys,

tracing information, and messages. This ensures confidentiality

goals even in more complicated attack settings, as well, for example

distinguishing between a sequence of forwards and a sequence of

new messages being sent.

Platform trace confidentiality. For platform trace confidential-

ity, we propose a real-or-random definition for the platform view,

i.e., the sender trace tag of a sent message. By using a real-or-

random style definition, we capture both goals of platform trace-

back, hiding message content and hiding message history, within a

single definition. In this game, given in Figure 4 (left), the adver-

sary A plays the role of the platform and is provided with a tag

generation challenge oracle that either returns the trace tag output

from TagGen or a random string. The task of the adversary is to

distinguish between the two where an adversary’s advantage is

defined as

Advp-tr-conf
MT

(A) =

���Pr [PTrCONFA,1
MT
⇒ 1

]
− Pr

[
PTrCONF

A,0
MT
⇒ 1

] ��� .

The sender trace tag in our path traceback scheme is made up of

a message identifier, which is the output of a PRF, and a ciphertext.

Intuitively, since the platform does not learn the key used with the

PRF or with encryption scheme, our scheme satisfies the security

property. More formally,

Theorem 1. LetMT be themessage tracing scheme for path trace-
back defined in Figure 3 using hash functionH . Then ifH is modeled
as a random oracle, for any PTrCONF adversary A that makes at
most q oracle queries, we give adversary B and C such that

Advp-tr-conf
MT

(A) ≤ AdvprfF ,q (B) + Adv
ror-cpa
E,q (C)

where if A runs in time T , then B and C run in time T ′ ≈ T and B
makes at most q oracle queries.

In the above, we use ≈ to hide small constants. We defer the

full proof as well as full definitions for the reduction targets to

Appendix A, and provide a sketch here.

Proof sketch: The proof proceeds in a straightforward fashion

through two main game hops. The first replaces the PRF evalua-

tion with that of a random function and bounds the distinguishing

advantage by the PRF security of F . The second replaces the encryp-
tion output with a random bit string and bounds the distinguishing

advantage by the real-or-random security of the underlying encryp-

tion scheme. After these two steps, it is easy to see that the sender

trace tag, which consists of the output mid of F and a ciphertext

ct, is a random bit string.

User trace confidentiality. In user trace confidentiality, a real-

or-random style definition will not work, as the recipient’s view

of tracing key, plaintext, and recipient trace tag have a related

structure and must verify under RecMsg. Instead, we focus on the

specific goal we aim to achieve under user trace confidentiality,

namely that message history is not revealed. We thus task the

adversary with distinguishing between the result of an authored

message and a forwarded message. The adversary gets to choose

the plaintext and, in the case the challenge oracle is forwarding,

the tracing key and recipient trace tag representing the message

to be forwarded. The game pseudocode is given in Figure 4 (right).

We define the distinguishing advantage of the adversary as:

Advu-tr-conf
MT

(A) =

���Pr [UTrCONFA,1
MT
⇒ 1

]
− Pr

[
UTrCONF

A,0
MT
⇒ 1

] ��� .
In our path traceback scheme, the recipient’s view consists of the

message identifier mid, tracing key ki , and the plaintext. Impor-

tantly, the ciphertext ct is stored by the platform and not visible to

the recipient. The tracing key is randomly generated for each sent

message and the message identifier is calculated as a function of

the tracing key and plaintext,mid ← Fki (p). Thus, no part of the

recipient’s view is dependent on previous message trace metadata,

e.g., ki−1, and any adversary’s advantage against our scheme is 0.

Theorem 2. LetMT be themessage tracing scheme for path trace-
back defined in Figure 3. For any UTrCONF adversary A,

Advu-tr-conf
MT

(A) = 0 .

PTrCONF
A,b
MT

:

b′←$ AChal

return b′

Chal(U1, U2, tmd, p):

(k, tt1s) ←$ TagGen(U1, U2, p, tmd)

tt0s ←$ {0, 1}len(tts)

return ttbs

UTrCONF
A,b
MT

:

b′←$ AChal

return b′

Chal(st, U0, k, ttr , U1, U2, p):

tmd0 ← RecMsg(k, U0, U1, p, ttr)
if tmd0 = ⊥ then return ⊥
tmd1←$ NewMsg(U1, p)
(k′, tts) ←$ TagGen(U1, U2, p, tmdb)

((mid, ttp), tt
′
r) ← Svr-Process(st, U1, U2, tts)

return (k′, tt′r)

Figure 4: Notions for (left) platform trace confidentiality and (right)
user trace confidentiality.

5.2 Accountability
Tracing should accurately identify the source of a message, but

malicious users can always obfuscate fromwhom they’ve received a

message.We therefore want tracing never to result in an honest user

erroneously implicated in having taken an action (sent, forwarded,

or received a message) they did not, in fact, perform.

To formalize accountability we use a game-based approach in

which an adversary interacts with some number n of honest users.

See Figure 5. The adversary can cause honest users to author and

send (adversarially chosen) messages via two oracles NewMsg and

Send. The adversary can also pose as any number of malicious

users, sending messages via a malicious send oracle SendMal. We

identify users by a number, user i is honest if i ∈ [1,n] and user i
is malicious if i < [1,n]. In our exposition we often use variables

U1, . . . ,Un to refer to the honest users, and Aj for j < [1,n] for a
malicious user. The security experiment here assumes authenticated

channels — the adversary cannot send messages as an honest user

nor manipulate messages sent between the honest users and the

platform. On the other hand, we give the adversary the power

to observe trace tags generated by, or sent to, honest users, but

they only see the tracing keys sent by honest parties to malicious

users. Given the use of secure channels to send messages, it would

seem sufficient to not reveal communications from honest parties

to the platform and from the platform to honest parties, but giving

the adversary this information only makes the security achieved

stronger.

The adversary’s goal is to generate a report that results in an

invalid trace, one that indicates that an honest user took some

action that they did not, in fact, take. Note that the adversary can

either have an honest user or malicious user make a report. In

the honest case, the adversary outputs a value c∗ indicating which

message received by i∗ is being reported, and in the malicious case

the adversary directly outputs an opening k∗. The game loops over

the reported trace (skipping the loop entirely if Svr-Trace output
an error), and checks for each honest user implicated in the trace

whether the reported tracematches an action they in fact performed.

We do this via a set of predicates, corresponding to where in the

trace the honest user appears, and whether they actually received

and/or sent the indicated messages.

As a non-exhaustive list of example invalid traces ruled out

by these predicates, consider the following scenarios, where for

simplicity we use a single honest user (n = 1):

TrUNF
A
MT,n :

c ← 0

(i∗, p∗, k∗, c∗) ←$ AO

if i∗ ∈ [1, n] then p∗ ← pc∗ ; k
∗ ← ki∗,c∗

(tr1, mid1,2, tr2, . . . , midτ−1,τ , trτ) ← Svr-Trace(PT, i∗, p∗, k∗)
if

(
i∗ ∈ [1, n] ∧ τ = 1

)
then return true

for j ∈ 1 to τ do
if tr j ∈ [1, n] then

if
(
j = 1 ∧ (WasSent(tr1, tr2, mid1,2, p∗) = false

)
or

(
j = τ ∧ WasRec(trτ−1, trτ , midτ−1,τ , p∗) = false

)
or

(
1 < j < τ ∧ WasFwd(tri−1, tri , midi−1,i , midi,i+1, p∗) = false

)
then

return true
return false

NewMsg(i, p):

if i < [1, n] then return ⊥
c ← c + 1
pc ← p
ki,c ←$ NewMsg(i, pc)
midc ← auth
return

Send(i, j, s):

if i < [1, n] ∨ ki,s = ⊥ then return ⊥
(k, tts) ←$ TagGen(i, j, ps , ki,s)
((mid, ttp), ttr) ←$ Svr-Process(PT, i, j, tts)
PT[mid] ← ttp
if mids = auth then WasSent(i, j, mid, ps) ← true
else WasFwd(i, j, mids , mid, ps) ← true
if j ∈ [1, n] then
c ← c + 1
pc ← ps
kj,c ← RecMsg(k, i, j, pc , ttr)
WasRec(i, j, mid, ps) ← true
midc ← mid

return ttr
return (ttr , k)

SendMal(i, j, k, p, tts):

if i ∈ [1, n] then return ⊥
((mid, ttp), ttr) ←$ Svr-Process(PT, i, j, tts)
PT[mid] ← ttp
if j ∈ [1, n] then
k ← RecMsg(k, p, ttr)
if k , ⊥ then
c ← c + 1
pc ← p
kj,c ← k

WasRec(i, j, mid, p) ← true
midc ← mid

return ttr

Figure 5: Trace unforgeability security game for path traceback.

• Message replacement: Honest userU1 sends a messagemid
with plaintext p to a malicious userA2, who then successfully

reports the trace p∗ : U1

mid
−→A2 for some plaintext p∗ , p.

This frames the honest user as having sent thewrong plaintext.

The only valid trace in this case is p : U1

mid
−→A2.

• Identity replacement: Honest userU1 sends a messagemid
with plaintext p to a malicious userA2, who then successfully

reports the trace p : U1

mid
−→A3 for some distinct user A3.

This frames the honest user as having sent themessage to a dif-

ferent user. The only valid trace in this case is p : U1

mid
−→A2.

• Path suffix: Malicious user A2 sends a messagemida with

plaintext p to the honest userU1, and thenU1 forwardsmida
to another user A3 in message midb . Then A3 successfully

reports the trace p : U1

midb
−→ A3. This frames the honest user

as having originated a message that they instead forwarded

from someone else. The valid traces that can be reported in

this case are p : A2

mida
−→ U1 and p : A2

mida
−→ U1

midb
−→ A2.

• Same-message, wrong path: Two malicious users A2,A3

send messagesmida ,midb with the same plaintext p to the

honest user U1. The honest user forwards the message mida
fromA2 to a userA4 in a messagemidc . FinallyA4 generates

a report resulting in trace p : A3

midb
−→ U1

midc
−→A4. This frames

the honest user as having forwarded a different message, de-

spite the plaintext being the same this could be an account-

ability problem given that the sender and message time are

incorrect. The valid traces that can be reported in this case are

p : A2

mida
−→ U1, p : A3

midb
−→ U1, and p : A2

mida
−→ U1

midc
−→A4.

Notice that the prefix of any valid trace is also a valid trace (though

the reporter would be different in each case), but suffixes of a valid

trace are not always valid (second example). Also the examples

highlight the importance of tracing particular messages, not just

plaintexts, as we want the platform to be able to reliably associate

metadata (senders, receivers, timing) of messages to a reported

trace.

We associate to any tracing scheme MT, number of honest

users n, and adversary A the path traceback forging advantage

Advtr-unf
MT,n (A) = Pr

[
TrUNF

A
MT,n ⇒ true

]
where the probability is taken over the random choices made in the

game, including those made by the adversary.

Intuitively, trace unforgeability is achieved in our path traceback

scheme due to the binding of the plaintext to a message identifier

with the tracing key. Honest users check the binding of message

identifiers they receive and send, so an adversary that wishes to

frame a user must find a collision on one of the honest user’s

message identifiers. For example, to achieve the message replace-

ment attack described above, an adversary must find an alternate

plaintext and key that collides with the honest user’s sent message

identifier. We thus provide the following theorem statement:

Theorem 3. LetMT be themessage tracing scheme for path trace-
back defined in Figure 3. Then, for any TrUNF adversary A that
makes at most qnm new message queries, qs send queries, and qsm
malicious send queries, we give adversaries B and C such that

Advtr-unf
MT,n (A) ≤ AdvprfF ,qnm

(B) + AdvcrF (C) +
qs + qsm

2
n

where if A runs in time T , then B and C run in time T ′ ≈ T and B
makes at most qs + qsm oracle queries.

We build a reduction using the collision resistance and PRF

security of F . We defer the full proof as well as full definitions for

the reduction targets to Appendix B, and provide a sketch here.

Proof sketch: This proof proceeds as a careful case analysis of

the four adversary winning conditions. We show that nearly all

of the winning conditions correspond to an adversary finding a

collision in F . In the single subcase that does not result in a collision,
we argue that the probability of reaching this subcase corresponds

to guessing the output of F keyed by a tracing key sampled in

NewMsg. Since tracing keys sampled in NewMsg are never re-

vealed to the adversary, we can show this probability is low using

the PRF security of F .

6 TREE TRACEBACK
Next, we consider an alternative traceback goal, tree traceback.

The goal in tree traceback is to allow reporting of a message with

plaintext p, enabling the platform to identify not just the path of

forwarded messages to the original author, as in path traceback, but

the entire forwarding tree of messages for p rooted at the original

author. A tree is denoted as a tuple of user identifier and list of

children subtrees, where each element of the children subtree list is

recursively a tree, i.e., a user identifier and list of children subtrees,

along with the message identifier for the message sent between

parent and child:

tr =
(
tra,

[(
mida,0, trb, [. . .]

)
,
(
mida,1, trc , [. . .]

)
, . . .

])
where trα ∈ U identifies a user and eachmidα,i is an identifier

for a message sent by trα .

The doubly-linked tags scheme. The doubly-linked tags con-

struction for tree traceback extends the strategy taken in path

traceback of storing encrypted pointers between message identi-

fiers. In the path traceback construction, for each message between

a sender and recipient, the platform stored an encrypted pointer

to trace backwards to the previous message, i.e., where the sender

received the message from. Intuitively, in tree traceback, we need

to extend this approach to also trace forwards in order to build the

forwarding tree. This includes storing pointers to forwards made

by the sender and forwards made by the recipient. However, at-

tempting to explicitly store encrypted pointers to other forwards is

problematic as the number of forwards of a message are not known

at the time of sending; the recipient has not yet even received the

message, let alone forwarded it, and the sender could choose to

forward the message to new recipients in the future.

We address this challenge by efficiently representing an un-

bounded set of pointers with a PRF key, gk, which acts as a gener-

ator for all the tracing keys associated to forwards of a particular

message. One enumerates the tracing keys by evaluating the PRF on

a counter ctr which is stored in the client’s state, k ← Fgk (ctr). As
in the path traceback construction, a tracing key points to a message

identifier through the evaluation of a PRF,mid ← Fk (p). Thus, the
platform stores three encrypted values with each message identifier:

(1) an encrypted tracing key ctki−1 for the previous message; (2) an

encrypted tracing key generator ctgki for other forwards by the

sender; and (3) an encrypted tracing key generator (ctgki+1 , ks1)
for forwards by the recipient.

The three encrypted values stored by the platform correspond

to three stages of performing tree traceback, each illustrated in Fig-

ure 6. Given a report consisting of a tracing key and plaintext, first

the platform follows the tracing keys, ki−1, for previous message

identifiers until reaching the message source, essentially perform-

ing path traceback (Figure 6 (a)). Next, using the sender tracing

key generator, gki , the platform enumerates the tracing keys and

message identifiers for all sends of the message from the source

sender (Figure 6(b)). Lastly, for each of these message identifiers,

the platform recursively builds out a subtree by enumerating the

tracing keys and message identifiers for the recipient’s forwards

using the recipient tracing key generator, gki+1 (Figure 6 (c)). The
full pseudocode for the scheme is also given in Figure 6.

There are a few subtle design points to our tree traceback scheme

that we highlight here. The first concern is how to securely escrow

the three encrypted values for each message identifier with the

platform. The sender can encrypt and send the previous message’s

tracing key and its own tracing key generator, but the sender can-

not know and therefore cannot escrow the recipient’s tracing key

generator. For confidentiality, the recipient’s tracing key generator

should only be known by the recipient. Instead, the sender and the

platform each create key shares for the recipient tracing key, ks0
and ks1, such that neither the sender nor the platform learn the

key, but the sender’s key share needed to derive the key is stored

encrypted on the platform. The recipient derives their tracing key

generator as gki+1 ← H (ks0 ∥ ks1) which appears random (given

that the sender and platform are not colluding).

A second concern arises from the enumeration of tracing keys

from a generator during traceback. In stages (b) and (c) in Figure 6,

the platform enumerates tracing keys by evaluating a PRF keyed

by the escrowed generator, gk, on a counter initialized to zero, in-

crementing and re-evaluating to produce the next tracing key. This

continues until the produced tracing key does not evaluate to a

valid message identifier in platform storage, indicating all forward-

ing branches for the user have been enumerated. This traceback

approach will only succeed if users correctly derive tracing key

generators from the escrowed key shares and correctly derive trac-

ing keys from the generator by incrementing a counter, and not,

for example, skipping a counter value. Left as is, these types of

deviations would result in a class of partition attacks that are so-

called “unidirectional”. In these attacks, a malicious user is able to

partition the tree trace to hide a subtree such that a report in the

main tree will end at the malicious user and not include the subtree;

but at the same time, a report in the subtree will trace through the

malicious user and identify the main tree as the source.

We address this by enforcing that a message is only traced back

to a sender if it would have also been traced forward to the recipient.

This invariant restricts malicious users to only being able to mount

“complete” partition attacks, in which if they choose to partition,

they are implicated in two disjoint traces: the end of one trace and

the source of the other. Enforcing this invariant manifests in tree

traceback by two well-formedness checks (denoted WellFormedgk
andWellFormedk in the pseudocode). The first check simply red-

erives the recipient generator to make sure it matches the one

escrowed by the recipient. The second well-formedness check de-

termines if a tracing key was properly derived from a generator.

Doing so requires enumerating with a counter, succeeding when

the current message tracing key is found, or fails when a generated

tracing key evaluates to an invalid message identifier. Both of these

checks take place during stage (a) of tree traceback to identify a

root that will not include fragmented subtrees.

Security of tree traceback.We formalize confidentiality and ac-

countability security in Appendix C, and just briefly describe it here.

NewMsg(U, m):

ki−1←$ {0, 1}n

gki ←$ {0, 1}n

tmd ← (ki−1, gki)

return tmd

TagGen(CTR, Us, Ur, p, tmd):

if tmd < CTR : CTR[tmd] ← 0

ctr ← CTR[tmd]

CTR[tmd] ← ctr + 1

(ki−1, gki) ← tmd

ki ← Fgki (ctr)
mid ← Fki (p)
ks0←$ {0, 1}n

k̃i ← H (ki)
ctki−1 ← Enc

k̃i
(ki−1)

ctgki ← Enc
k̃i
(gki)

ctgki+1 ← Enc
k̃i
(ks0)

tts ← (mid, ctki−1 , ctgki , ctgki+1)
return (CTR, ki , tts)

RecMsg(ki , Us, Ur, p, ttr):

(mid, ctgki+1 , ks1) ← ttr
if mid , Fki (p) : return ⊥
k̃i ← H (ki)
ks0 ← Dec

k̃i
(ctgki+1)

gki+1 ← H (ks0 ∥ ks1)
tmd ← (ki , gki+1)

return tmd

Svr-Process(PT, Us, Ur, tts):

(mid, ctki−1 , ctgki , ctgki+1) ← tts
if mid ∈ PT : return ⊥
ks1←$ {0, 1}n

ttp ← (ctki−1 , ctgki , ctgki+1 , ks1, Us, Ur)

ttr ← (mid, ctgki+1 , ks1)
return ((mid, ttp), ttr)

Svr-Trace(PT, U, p, tmd):

(ki , gki+1) ← tmd

root← U

rootgk ← gki+1
mid ← Fki (p)
while mid ∈ PT :

(ctki−1 , ctgki , ctgki+1 , ks1, Us, Ur) ← PT[mid]

if root , Ur : break
k̃i ← H (ki)
ks0 ← Dec

k̃i
(ctgki+1)

if not WellFormedgk (gki+1, ks0, ks1) : break
gki ← Dec

k̃i
(ctgki)

if not WellFormedk (ki , gki , PT) :
return (Us, [(Fki (p), trace_fwd(PT, p, Ur, gki+1)])

root← Us

rootgk ← gki
ki ← Dec

k̃i
(ctki); gki+1 ← gki

mid ← Fki (p)
return trace_fwd(PT, p, root, rootgk)

trace_fwd(PT, p, U, gki):

init list Tr; j ← 0

while k ← Fgki (j);mid ← Fk (p); mid ∈ PT :

(ctki−1 , ctgki , ctgki+1 , ks1, Us, Ur) ← PT[mid]

k̃ ← H (k)
ks0 ← Dec

k̃
(ctgki+1)

gki+1 ← H (ks0 ∥ ks1)
Tr[j] ← (mid, trace_fwd(PT, p, Ur, gki+1))

j ← j + 1
return (U, Tr)

Ua

Ub Uc

mida,0

midb,0

mida,0 ← Fkb,0 (p)
ctki−1 ← PT[mida,0]

ka,0 ← DecH (kb,0)(ctki−1)

(a)

Ua

Ub

Ud

Ue

mida,0

mida,1

mida,2

mida,0 ← Fka,0 (p)
ctgki ← PT[mida,0]

gka ← DecH (ka,0)(ctgki)
ka,1 ← Fgka (1)
ka,2 ← Fgka (2)

(b)

Ua

Ue

Uf

Ug

mida,2

mide,0
mide,1

mida,2 ← Fka,2 (p)
(ctgki+1, ks1) ← PT[mida,2]

ks0 ← DecH (ka,2)(ctgki+1)
gke ← H (ks0 ∥ ks1)
ke,0 ← Fgke (0)
ke,1 ← Fgke (1)

(c)

sent message

traceback

Figure 6: Doubly-linked tags construction for tree traceback. The
subdiagrams showhow traceback propagates in each of three stages
of tree traceback: (a) trace to parent up to root, (b) trace to siblings,
(c) trace to children recursively. Solid arrows denote sent messages,
while dashed arrows denote the propagation of traceback from blue
to purple given tracing key for blue.

The starting point is the definitions for path traceback detailed in

Section 5, but adapted to fit the tree traceback syntax and semantics.

Because our clients are now stateful (due to the counters used along

with key generators), we modify the confidentiality games to allow

the adversary to drive the honest client to an arbitrary state before

submitting challenge queries.

The accountability game is modified to iterate through the re-

turned tree trace checking the appropriate conditions. This defini-

tion currently only guarantees that no honest user can be “framed”

as having performed some action they did not, in fact, perform. This

does not capture some accountability attacks that our tree trace-

back scheme protects against, in particular, the difference between

allowing unidirectional partitions versus the stronger guarantee of

only allowing complete partitions (as described above). An open

question is therefore how to provide stronger formal definitions.

We provide a formal analysis of the doubly-linked tags scheme

in Appendix C.

7 IMPLEMENTATION AND EVALUATION
To evaluate our tracing protocols, we provide a prototype library

and tracing service implementation in Rust that can be readily

integrated into existing end-to-end encrypted messaging systems.

For our hash, collision-resistant pseudorandom function, and block

cipher primitives, we use SHA-3, HMAC derived from SHA-3, and

AES-128. All of these operations are supported by the Rust Crypto

library [4]. The tracing service uses Redis [1] as its underlying key-

value store. Both the library and service code are available open

source at https://github.com/nirvantyagi/tracing.

Our tracing service can be integrated into existing end-to-end

encrypted messaging systems with the following client and server

side changes. The client will make library calls toNewMsg, TagGen,
and RecMsg when sending, forwarding, and receiving messages

and it will store trace metadata associated with messages accepted

byRecMsg. The tracing key is includedwith the plaintext in the end-
to-end encrypted ciphertext. The sender and recipient trace tags are

sent alongside the end-to-end ciphertext to and from the platform.

On the server side, the tracing service is run as an internal service.

The messaging server receives the end-to-end ciphertext and sender

trace tag and sends a “process” request including the sender trace

tag and user identifiers for the sender and recipient to the tracing

service. The tracing service handles running Svr-Process, storing
the appropriate information in a key-value store, and returns the

recipient trace tag, which the messaging server delivers with the

end-to-end ciphertext. The client and messaging server also need

to be modified to send and accept reports of messages (if that

functionality is not already included). The client includes the trace

metadata along with the plaintext in the report. The messaging

server simply forwards the reported plaintext and trace metadata

to the tracing service which runs Svr-Trace and saves the message

trace to be used downstream for moderation.

Timing benchmarks. At a high level, our tracing schemes are fast

and induce minimal storage and bandwidth overhead. This is to be

expected as our schemes are composed of symmetric cryptographic

techniques over small 128 bit components. Experiments were per-

formed on a 2.2 GHz Intel Core i7 Processor with 8 GB of RAM. The

Scheme TagGen (µs) RecMsg (µs)

path traceback 7.4 ± 0.4 1.7 ± 0.1

tree traceback 26.0 ± 2.8 7.3 ± 0.1

Figure 7: Time to run client-side tag generation and verification al-
gorithms.

Scheme
Sender

bandwidth (B)
Recipient

bandwidth (B)
Platform
storage (B)

Client
storage (B)

path traceback 64 48 36 16

tree traceback 96 80 84 34

Figure 8: Bandwidth and storage costs incurred per message.

time to run the client-side algorithms, TagGen and RecMsg, for gen-
erating and verifying trace tags is shown in Figure 9; the NewMsg
algorithm is not shown as it simply samples a random number.

For path traceback the tag generation and verification algorithms

take < 10 microseconds, and for tree traceback the algorithms take

< 50 microseconds. In practice, client side operations will often

be performed on less powerful mobile devices, e.g. running ARM

processors, but we do not expect the difference in timing to be

prohibitive.

We next turn to evaluate the server side algorithms, Svr-Process
and Svr-Trace. The server side algorithms interact with a key-value

store, the performance characteristics of whichwill affect the perfor-

mance of the algorithm. In our schemes, the Svr-Process algorithm
essentially performs a key-value put operation and relays the trace

tag; no cryptographic operations are performed. As expected, this

translates to a minimal cost operation for most key-value stores –

in our benchmarks, in which the server key-value store is instanti-

ated with an in-memory Redis data store, the Svr-Process algorithm
takes on the order of 100microseconds. Building a trace of messages

using the Svr-Trace algorithm is where the majority of computation

is performed. Importantly, the time to build a trace is linearly depen-

dent on the number of messages revealed in the trace, i.e. trace size.

Intuitively, this is because our schemes traverse the trace message

by message performing only a constant number of decryptions and

PRF evaluations per message. This relationship is easily seen for

the case of path traceback as shown in Figure 9, in which we find

that building a trace takes ≈ 100 microseconds per message in the

path. For tree traceback, the traceback time is dependent not only

on tree size, but also on tree structure; in particular, the branching

factor, i.e., the average number of forwards made by each user. In

our tree traceback scheme, the branching factor is the number of

forward tracing keys learned per message lookup and decryption.

The cost of PRF evaluations to enumerate forward tracing keys is

less expensive than the key-value lookup and decryption cost of

dereferencing a tracing key. Thus, as the branching factor increases,

the time per message decreases (Figure 10 (right)). In the worst

case, with branching factor equal to one, i.e. a path, the time per

message is < 300 microseconds, which still leads to efficient tree

traces regardless of structure. As an example, a trace of a tree of

size 20,000 is built in under two seconds.

https://github.com/nirvantyagi/tracing

50 100 150 200
path length (# msgs)

0

10

20

tim
e

(m
s)

50 100 150 200
path length (# msgs)

0

50

100

tim
e

/ m
sg

 (
s/

m
sg

)
Figure 9: Path traceback timing with respect to path length. (Left)
Total time to complete trace. (Right) Traceback rate of time permes-
sage in trace.

4 6 80

50

100
102 103

tree size (# msgs)

4 6 8
tree branching factor

0

50

100

4 6 80

1000

2000

tim
e

(m
s)

102 103 104
tree size (# msgs)

4 6 8
tree depth

0

50

100

tim
e

/ m
sg

 (
s/

m
sg

)

Figure 10: Tree traceback with varying tree structure. (Left) Vary-
ing tree depth with constant branching factor of 3. (Right) Varying
branching factor with constant depth of 3. (Top) Total time to com-
plete trace. (Bottom) Traceback rate of time per message in trace.

Storage and bandwidth overhead. Our tracing schemes intro-

duce extra tracing metadata that needs to be stored and send by

both the client and server. As shown in Figure 8, the absolute size

of the stored trace metadata is small — a 256-bit PRF output and a

few 128-bit block cipher outputs. For client storage and bandwidth,

we expect the overhead induced by < 100B of trace metadata per

message to be dwarfed by the size of the message itself; further-

more, for client storage, when the message is deleted, the associated

trace metadata can be deleted with it. For server storage, however,

in platforms like Signal and WhatsApp, message ciphertexts are

not stored, aside from a temporary staging period until they have

been delivered. In this case, trace metadata incurs the addition of a

new long-term storage cost that potentially represents a significant

infrastructure change. To limit storage costs, if the goal of message

tracing is to combat ongoing misinformation campaigns, it seems

reasonable to store only a sliding window of trace metadata, say

for the current month. In this case, if the platform sees one billion

messages of traffic per day, the data store would be of size ≈ 2TB

for tree traceback and 600GB for path traceback. A data store of this

size can be instantiated with an in-memory data store like Redis

as in our benchmarks, or more cheaply with a database, where the

tradeoff would be slower traceback.

8 DISCUSSION
Here we present further discussion on open questions raised by

this work.

Supporting more general plaintext linking policies. Recall
that we hypothesized it is possible to use client-side software in

honest clients to detect and prevent copy-paste behavior and unin-

tentional partitioning, therefore limiting partition attacks to mali-

cious users with hacked clients. One of the challenges of building

such detection software is making it robust to small perturbations

in messages as they are forwarded. Our schemes focus on tracing

messages that contain identical plaintexts for simplicity of presen-

tation, but our formalization and schemes can easily be extended

to support more general tracing policies, such as tracing closely

related message content (e.g., similar images). Given a received

message with plaintext p and a message with plaintext p′ to be sent,
an honest client can run some arbitrary procedure to determine

whether to allow (or require) tracing to link p and p′. The proce-
dure could also take into account the sender and recipient identities.

Supporting traceback in this context will require escrowing with

the platform an encryption of p (or, at least, a diff between p and p′),
which will inflate storage costs. This could allow significantly more

flexibility in tracing functionality, with the accompanying risk of

more permissive revelation of plaintext content during tracing. De-

ployment of such a policy would require defining actionable policies

about what messages should be considered related; a tricky topic

that requires more research.

Preventing partition attacks by malicious users. If we assume

the existence of effective message-similarity detection software

running on honest clients, one solution to prevent malicious users

from bypassing these checks is trusted hardware; i.e., require all

clients to faithfully execute the detection software. In the absence

of client-side trusted hardware, we can attempt to prevent such

behavior cryptographically using zero-knowledge proofs, albeit

at a far greater cost. Such a solution would require the platform

to maintain, for each user, a set of all ciphertext, tag pairs the

user has received. For each new message a user sends, they would

need to prove in zero-knowledge that their message is unique (or

sufficiently dissimilar) with respect to the set or it is constructed
as a forward of an appropriate message in the set. This is unlikely

to be practical. In any case, both the trusted hardware and zero-

knowledge solutions are susceptible to similarity-evasion attacks in

which the adversary specially crafts amessage that evades similarity

detection but continues to carry the malicious intent.

Mitigating abuse of abuse mitigations. Message tracing can be

used to identify the source of malicious or harassing messages. But

the same techniques can be used against whistleblowers or activists.

Robust policy dictating how and when to perform tracing is neces-

sary for protection of users’ privacy expectations. Our proposed

schemes offer one such policy; a single report from a user that has

received a message unlocks the ability for the platform to trace.

Of course, higher level policies within the platform can dictate if

a report is acted on, but this leaves open an interesting question

if it is possible to integrate more expressive reporting and tracing

policies directly into the cryptographic tracing scheme.

One interesting approach is to couple a tracing mechanism with

an anonymous blacklisting scheme [18]. In anonymous blacklisting,

cryptographic material bound to each message can be used to bar

the author from further participation without linking messages

together or identifying the author. One could extend this to tracing

schemes, allowing the platform the ban the source or forwarders of

a message without learning their identities. To be meaningful, this

would require a tracing scheme that did not depend on metadata.

A second interesting approach for tree traceback is threshold

reporting, where a message would need to be reported by many

users before it can be traced. Once a certain threshold of reports is

reached, some part or all of the trace tree could be revealed. Care

would need to be taken to prevent one malicious client from hitting

some reporting threshold q by forwarding the message to q collud-

ing clients. And there are questions of the appropriate threshold

and if it should or could vary with the size of the forwarding tree.

Finally, one could imagine various mechanisms for increasing

the robustness of the tracing authority. We could require multiple

parties to cooperate to recover a trace. Or delegating tracing au-

thority to a separate party. Similarly we could imagine the tracing

authority operating as part of a contractual anonymity system [27],

in which a verifiable third-party mediates between users and the

authority, only giving the authority the ability to de-anonymize if

a user breaks their contract policy.

9 RELATEDWORK

Tracing mechanisms. To the best of our knowledge, there are no
works directly addressing tracing of forwards in E2E encrypted

messaging or messaging in general. A number of works, includ-

ing [9, 15, 20] have considered the problem of tracing payments

in electronic cash systems. This is a conceptually related problem.

However, the techniques are not directly applicable. First, these

systems do not deal with binding the content of a message to the

trace. Second most systems assume far more interaction with a

central party (e.g., a bank) than is allowed in our setting.

Another line of work [25, 29, 30] considered IP packet traceback.

But the approaches taken here are probabilistic. The point is not

to trace an individual packet, but to get a trace of a stream of

packets. As such packets are probabilistically marked [25] or kept

in a Bloom filter [29]. They cannot be used to reliably trace an

individual message.

A recentwork [28] takes a different approach, supporting privacy-

preserving path validation for a single packet. However, the ap-

proach requires the path to be known in advance so the appropriate

session keys can be generated. It does not work for the ad-hoc paths

that arise as messages are forwarded through a social network.

Secure logging. A sequence of works, including [26] considered

secure loggingmechanisms. The goal is to record on a local machine

a log of all activity that both cannot be modified by an attacker

and does not reveal anything without access to a decryption key.

Typically such systems assume a third party who holds a key that

is used to authenticate logs via signatures or hashes. Our tracing

approach is, in a sense, a form of secure log in that we want (1)

confidentiality from the party who stores the log (the messaging

platform) until a key is revealed and (2) integrity from the party

creating the log (the communicating users). However, our “log” has

a richer structure we must obscure, more specific integrity guar-

antees, and the setting requires us to split the roles for preserving

integrity and confidentiality.

Symmetric searchable encryption. A long line of symmetric

searchable encryption (SSE) schemes use “encrypted pointers” sim-

ilar to ours to hide the structure of an index held on an untrusted

server. In particular we use techniques reminiscent of [10, 12] to

construct our tracing mechanism extended to bind message plain-

texts into the pointers and protect against maliciously generated

pointers. Our functionality, confidentiality, and integrity goals are,

however, distinct.

Traitor tracing. Another line of work explores traitor tracing

mechanisms [7, 11] for identifying who within a group leaked

a particular piece of content or a key to an outside party. These

schemes are not directly applicable for a few reasons. First, the

goals of message tracing are not to trace who leaked/reported the

message to the platform (out of the forwarding chain “group”). Sec-

ond, message tracing has very specific restrictions on who is able

to perform tracing. For example, by user trace confidentiality, even

members of the forwarding chain “group” should not be able to

learn the message trace.

Signatures and aggregate signatures.Aggregate signatureswere
first proposed by Boneh et al. [8] in part to allow the path of a mes-

sage through a network to be authenticated by an aggregation of

the per-hop signatures and a list of the hops taken. In contrast,

our scheme achieves its results without requiring the message to

contain a linear list of its path-to-date and without disclosing that

path to intermediaries.

Message franking. Message franking [13, 17] is another line of

work that aims to prevent abuse in end-to-end encrypted messag-

ing. While these protocols inspire our work, they cannot be used

to report messages past one hop: a forwarded message can only

be attributed to the last forwarder. One might attempt to employ

message franking to trace further by sequentially interacting with

each previous sender requiring them to either provide the message

franking opening for the previous message (if the message was a

forward) or be identified as the original source for the message.

Such a solution would be impractical in the face of offline users and

large forwarding trees.

Automated moderation systems. Various works have explored
ad-hoc moderation[16] or machine learning to detect abusive con-

tent [24]. We do not provide a exhaustive list here. These works are

promising but require the originators of messages be identified if

they are to be held accountable or prevented from sending further

messages.

10 CONCLUSION
We introduced tracing for E2E encrypted messaging. In this setting,

a messaging platform can recover and cryptographically verify the

path a message took as it was forwarded between users given a

report by one of the recipients. We gave two schemes for tracing

messages with different traceback targets: path to message source

and entire message forwarding tree. Implementation benchmarks

show both schemes are efficient and require the messaging platform

to store less than 100 bytes of additional data per message sent.

ACKNOWLEDGMENTS
This work was supported in part by NSF awards DGE-1650441 and

CNS-1704527.

REFERENCES
[1] 2009. Redis. https://redis.io/

[2] 2013. Signal. https://signal.org/

[3] 2013. Telegram. https://telegram.org/

[4] 2016. Rust Crypto. https://github.com/RustCrypto

[5] 2016. WhatsApp. https://www.whatsapp.com/

[6] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and

a Framework for Code-Based Game-Playing Proofs. In EUROCRYPT.
[7] Dan Boneh and Matthew K. Franklin. 1999. An Efficient Public Key Traitor

Tracing Scheme. In CRYPTO.
[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and

Verifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT.
[9] Jan Camenisch, Ueli M. Maurer, and Markus Stadler. 1997. Digital Payment

Systems With Passive Anonymity-Revoking Trustees. Journal of Computer
Security (1997).

[10] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin

Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In CRYPTO.
[11] Benny Chor, Amos Fiat, and Moni Naor. 1994. Tracing Traitors. In CRYPTO.
[12] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions. In

CCS. ACM.

[13] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. 2018.

Fast Message Franking: From Invisible Salamanders to Encryptment. In CRYPTO.
[14] Facebook. 2017. Messenger Secret Conversations technical

whitepaper. https://fbnewsroomus.files.wordpress.com/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf.

[15] Yair Frankel, Yiannis Tsiounis, and Moti Yung. 1996. "Indirect Discourse Proof":

Achieving Efficient Fair Off-Line E-cash. In ASIACRYPT.
[16] R Stuart Geiger. 2016. Bot-based collective blocklists in Twitter: the counter-

public moderation of harassment in a networked public space. Information,
Communication & Society 19, 6 (2016), 787–803.

[17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via

Committing Authenticated Encryption. In CRYPTO.
[18] Ryan Henry and Ian Goldberg. 2013. Thinking inside the BLAC box: smarter

protocols for faster anonymous blacklisting. In WPES. ACM.

[19] Mike Isaac and Kevin Roose. 2018. Disinformation Spreads on WhatsApp

Ahead of Brazilian Election. https://www.nytimes.com/2018/10/19/technology/

whatsapp-brazil-presidential-election.html

[20] Dennis Kügler and Holger Vogt. 2002. Offline Payments with Auditable Tracing.

In Financial Cryptography (FC).
[21] Joshua Lund. 2018. Technology preview: sealed sender for Signal. https:

//signal.org/blog/sealed-sender/

[22] Alexis Madrigal. 2018. India’s Lynching Epidemic and the Problem With Blam-

ing Tech. https://www.theatlantic.com/technology/archive/2018/09/whatsapp/

571276/

[23] Farhad Manjoo. 2018. The Problem With Fixing WhatsApp? Human Nature

Might Get in the Way. https://www.nytimes.com/2018/10/24/technology/

fixing-whatsapp-disinformation-human-nature.html

[24] Benjamin Mullin. 2017. The New York Times is teaming up with Alpha-

bet’s Jigsaw to expand its comments. https://www.poynter.org/news/

new-york-times-teaming-alphabets-jigsaw-expand-its-comments

[25] Stefan Savage, David Wetherall, Anna R. Karlin, and Thomas E. Anderson. 2000.

Practical network support for IP traceback. In SIGCOMM.

[26] Bruce Schneier and John Kelsey. 1999. Secure Audit Logs to Support Computer

Forensics. ACM Trans. Inf. Syst. Secur. 2, 2 (1999), 159–176.
[27] Edward J. Schwartz, David Brumley, and Jonathan M. McCune. 2010. Contractual

Anonymity. In NDSS. The Internet Society.
[28] Binanda Sengupta, Yingjiu Li, Kai Bu, and Robert H. Deng. 2019. Privacy-

Preserving Network Path Validation. Cryptology ePrint Archive, Report 2019/407.

https://eprint.iacr.org/2019/407.

[29] Alex C. Snoeren. 2001. Hash-based IP traceback. In SIGCOMM.

[30] Dawn Xiaodong Song and Adrian Perrig. 2001. Advanced and Authenticated

Marking Schemes for IP Traceback. In INFOCOM.

[31] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.

2017. Stadium: A Distributed Metadata-Private Messaging System. In SOSP.
ACM.

RoR-CPA
A,b
E,m :

(K1, . . . , Km) ←$ KeyGenm

b′←$ AFn

return b′

Fn(i, M):

C1←$ EncKi (M)

C0←$ {0, 1}clen(|M |)

return Cb

Figure 11: Multi-key variant of Real-or-random chosen plaintext se-
curity game.

PRF
A,1
F ,m :

(K1, . . . , Km) ←$ KeyGenm

b′←$ AFn

return b′

Fn(i, X):

return FKi (X)

PRF
A,0
F ,m :

(ρ1, . . . ρm) ←$ Func(n, n)m

b′←$ AFn

return b′

Fn(i, X):

return ρi (X)

Figure 12: Multi-key variant of PRF security game.

[32] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: scalable private messaging resistant to traffic analysis. In SOSP. ACM.

[33] WhatsApp. [n. d.]. https://faq.whatsapp.com/en/android/26000165/

[34] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.

2012. Dissent in Numbers: Making Strong Anonymity Scale. In OSDI. USENIX.

A CONFIDENTIALITY PROOF
First we recall the standard security notions needed in our proof.

The real-or-random chosen plaintext attack (RoR-CPA) extended

for multiple keys is defined in Figure 11. The adversary is tasked

with determining whether ciphertexts are generated through the

encryption algorithm or as a random bit string. The adversary’s

advantage is defined as

Advror-cpa
E,m (A) =

���Pr [RoR-CPAA,1
E,m ⇒ true

]
− Pr

[
RoR-CPA

A,0
E,m ⇒ true

] ��� .
The PRF security game extended for multiple keys is defined in

Figure 12. The adversary is tasked with determining whether it is

interacting with the PRF keyed on key i or a random function ρi .
The adversary’s advantage is defined as

AdvprfF ,m (A) =
���Pr [PRFA,1F ,m ⇒ true

]
− Pr

[
PRF

A,0
F ,m ⇒ true

] ��� .
A.1 Platform Trace Confidentiality

Theorem 1. LetMT be themessage tracing scheme for path trace-
back defined in Figure 3 using hash functionH . Then ifH is modeled
as a random oracle, for any PTrCONF adversary A that makes at
most q oracle queries, we give adversary B and C such that

Advp-tr-conf
MT

(A) ≤ AdvprfF ,q (B) + Adv
ror-cpa
E,q (C)

where if A runs in time T , then B and C run in time T ′ ≈ T and B
and C make at most q oracle queries.

https://redis.io/
https://signal.org/
https://telegram.org/
https://github.com/RustCrypto
https://www.whatsapp.com/
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://www.nytimes.com/2018/10/19/technology/whatsapp-brazil-presidential-election.html
https://www.nytimes.com/2018/10/19/technology/whatsapp-brazil-presidential-election.html
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.theatlantic.com/technology/archive/2018/09/whatsapp/571276/
https://www.theatlantic.com/technology/archive/2018/09/whatsapp/571276/
https://www.nytimes.com/2018/10/24/technology/fixing-whatsapp-disinformation-human-nature.html
https://www.nytimes.com/2018/10/24/technology/fixing-whatsapp-disinformation-human-nature.html
https://www.poynter.org/news/new-york-times-teaming-alphabets-jigsaw-expand-its-comments
https://www.poynter.org/news/new-york-times-teaming-alphabets-jigsaw-expand-its-comments
https://eprint.iacr.org/2019/407
https://faq.whatsapp.com/en/android/26000165/

G0 G1 :

b′←$ AChal

return b′

Chal(U1, U2, ki−1, p):

ki ←$ {0, 1}n

if ki < K then
K[ki] ← j ; j ← j + 1

k̃i ← H (ki)

mid ← Fki (p); mid ← ρK[ki](p)

ct ← Enc
k̃i
(ki−1)

tts ← (mid, ct)
return tts

G2 G3 :

b′←$ AChal

return b′

Chal(U1, U2, ki−1, p):

ki ←$ {0, 1}n

if ki < K then
K[ki] ← j ; j ← j + 1

k̃i ← H (ki)
mid ← {0, 1}n

ct ← Enc
k̃i
(ki−1); ct←$ {0, 1}clen(n)

tts ← (mid, ct)
return tts

Figure 13: Security game hops for platform trace confidentiality
proof for path traceback.

Proof. We bound the advantage ofA in the PTrCONF game by

bounding the advantage of each of a series of game hops, shown

in Figure 13. At a high level, there are two main transitions. The

first transition replaces the PRF evaluation with an evaluation of a

random function. The distinguishing advantage is bound by the PRF

security of F . The second transition samples ct randomly instead

of setting it as the output of an encryption algorithm. We bound

the distinguishing advantage by RoR-CPA advantage against the

symmetric encryption scheme.

G0 is the same as PTrCONF
A,1

with TagGen unrolled and a

bookkeeping table K added. The table K stores the tracing keys

sampled in the challenge oracle by an index j . G1 is the same as G0

exceptmid is set as the output of one of a set of random functions ρ
indexed by the key index K[k]. Consider a multi-key PRF adversary

B that replaces the PRF call setting mid with a call to its oracle

(with a new index for each query). B runs exactly G0 and G1 for

challenge bit b = 1 and b = 0 respectively,

|Pr [G0⇒ true] − Pr [G1⇒ true]| = AdvprfF ,q (B) .

G2 replaces the call to the random function by simply randomly

samplingmid. The difference between these two ways of sampling

mid is that if the same key k was sampled twice on the same

plaintext p, then G1 would make a duplicate call to ρK[k](p) and
mid would be the same. However, the probability that this occurs

is the exact same as if a random sample ofmid is a duplicate. Thus,

Pr [G1⇒ true] = Pr [G2⇒ true] .

Lastly, G3 is the same as G2 except ct is set as a random value.

Consider a multi-key RoR-CPA adversary C that replaces the en-

cryption call with a call to its encryption oracle. Then, C runs

exactly G2 and G3 for challenge bit b = 1 and b = 0 respectively,

|Pr [G2⇒ true] − Pr [G3⇒ true]| = Advror-cpa
E,q (C) .

Finally, note that the trace tag output in G3 is simply a fresh ran-

dom value for each challenge oracle call, equivalent to PTrCONF
A,0

,

completing the proof.

UTrCONF
A,b
MT

:

b′←$ AChal

return b′

Chal(st, U0, k, ttr , U1, U2, p):

mid ← ttr
if mid , Fk (p) : return ⊥
k0 ← k

k1←$ {0, 1}n

k′←$ {0, 1}n

k̃′ ← H (k′)
mid ← Fk′ (p)

(((((ct ← Enc
k̃′
(kb)

if mid ∈ st : return ⊥

((((((
ttp ← (ct, U1, U2)

return (k′, mid)

Figure 14: Unrolled user trace confidentiality game for path trace-
back showing independence on challenge bit b .

CR
A
F :

((K, X), (K ′, X ′)) ←$ A

if (K, X) = (K ′, X ′) then return false
return FK (X) = FK ′ (X

′)

Figure 15: PRF collision resistance security game.

A.2 User Trace Confidentiality
Theorem 2. LetMT be themessage tracing scheme for path trace-

back defined in Figure 3. For any UTrCONF adversary A,

Advu-tr-conf
MT

(A) = 0 .

Proof. The output of the challenge oracle is k ′ and mid where

mid ← Fk′(p). Both of these values are independent of the chal-

lenge bit b, so any adversary will achieve advantage 0. The unrolled
algorithms are shown in Figure 14 in which the lines that are de-

pendent on challenge bit b, i.e. the ciphertext stored in platform

state, are striked out and shown to not affect the oracle output.

B ACCOUNTABILITY PROOF
First we recall the standard security notions needed in our proof.

The multi-key variant for PRF security is defined in Figure 12 and

described in the preliminaries of Appendix A. Collision resistance

for PRFs (CR) is defined in Figure 15. The adversary is tasked with

finding two different key-message pairs that evaluate to the same

value under the PRF. The adversary’s advantage is defined as

AdvcrF (A) = Pr

[
CR
A
F ⇒ true

]
.

Theorem 3. LetMT be themessage tracing scheme for path trace-
back defined in Figure 3. Then, for any TrUNF adversary A that
makes at most qnm new message queries, qs send queries, and qsm
malicious send queries, we give adversaries B and C such that

Advtr-unf
MT,n (A) ≤ AdvprfF ,qnm

(B) + AdvcrF (C) +
qs + qsm

2
n

where if A runs in time T , then B and C run in time T ′ ≈ T and B
makes at most qs + qsm oracle queries.

Proof. This proof proceeds as a careful case analysis of the four

adversary winning conditions. We will show that nearly all of the

winning conditions correspond to an adversary finding a collision

in the PRF F . In the single subcase that does not result in a collision,

we will argue that the probability of reaching this subcase is low

using the PRF security of F .
First, we move to a game which excludes the problematic win-

ning condition, instead returning false, shown as a game hop from

G0 to G1 as shown in Figure 16. The event of hitting the problem-

atic winning condition is denoted by setting flag to bad. G0 is the
same as TrUNF

A
with some extra bookkeeping added. First, the

Svr-Trace algorithm is unrolled and the tracing keys used at each

step of the traceback are saved into a table TrK. Second, in Send,
tables S and SK are added to link the counter value s and k of the

sent message to the identifiermid in PT. Third, a table, K is added to
track the dummy tracing keys sampled in NewMsg and assigning

them an index to be used in the multi-key PRF security game.

The early return of false in the problematic win condition is

the relevant change for the hop from G0 to G1. Flag flag is set to
bad in the main body if the WasFwd win condition is satisfied and

the plaintext associated withmidi,i+1 is the same as the reported

plaintext. We will see in the case analysis why this specific win

condition is problematic. In G1, instead of continuing executing

after a flag is set, the game is aborted and false is returned. By the

fundamental lemma of game playing [6],

Pr [G0⇒ true] ≤ Pr [G1⇒ true]

+ Pr [G0 sets bad] .

Next, consider G2 which is the same as G0 except during trace-

back, if the decrypted tracing key is in K, i.e. sampled in Send, then
instead of executing PRF, one of a family of random functions ρ is

executed. For simulation purposes, each of the random functions

ρi are instantiated lazily. Note that this is the only place where the

PRF is evaluated on a key sampled from NewMsg. Now consider

the PRF adversary B that runs G2 replacing the call to ρ with a

call to the PRF oracle and returning true if flag is set to bad. This
corresponds exactly to the difference between G0 and G2 and thus,

Pr [G0 sets bad] ≤ Pr [G2 sets bad] + AdvprfF ,m (B) .

Next, we show through a case analysis that we can build an

adversary C that can take a win from G1 and output a collision for

F . The case analysis is for the four winning conditions of G1. We

will return to bound the the probability of flag during discussion
of the appropriate case.

• Case 1: i∗ ∈ [1,n] ∧ τ = 1

By game construction, the reported tracing key, k∗ = ki∗,c∗ ,
was populated following the output of a successful RecMsg
in either Send or SendMal. A successful RecMsg implies the

verification check Fk∗ (p∗) = midc∗ succeeded. The call the
RecMsg is made aftermidc∗ is populated in PT with i∗ as the
recipient. Thus, during traceback the sender associated with

PT[midc∗] will be added to the trace. Meaning the trace must

include at least two users and this win condition is impossible.

G0 G1 G2 :

c ← 0; r ← 0

(i∗, p∗, k∗, c∗) ←$ AO

if i∗ ∈ [1, n] then p∗ ← pc∗ ; k
∗ ← ki∗,c∗

j ← 0; k ← k∗

Tr[j] ← i∗

mid ← Fk (p∗)
while mid ∈ PT :

(ct, trs, trr) ← PT[mid]

if trr , Tr[j] : break
Tr[j + 1] ← mid; Tr[j + 2] ← Us ; TrK[j/2] ← k

k̃ ← H (k); k ← Dec
k̃
(ct)

mid ← Fk (p∗)

if k ∈ K then mid ← ρK[k](p
∗)

j ← j + 2
(tr1, mid1,2, tr2, . . . , midτ−1,τ , trτ) ← Tr−1

(trk1,2, . . . , trkτ−1,τ) ← TrK−1

if
(
i∗ ∈ [1, n] ∧ τ = 1

)
then return true

for j ∈ 1 to τ do
if tr j ∈ [1, n] then

if
(
j = 1 ∧ (WasSent(tr1, tr2, mid1,2, p∗) = false

)
then return true

if
(
j = τ ∧ WasRec(trτ−1, trτ , midτ−1,τ , p∗) = false

)
then return true

if
(
1 < j < τ ∧ WasFwd(tri−1, tri , midi−1,i , midi,i+1, p∗) = false

)
then

s ← S[midi,i+1]

if ps = p∗ ∧ SK[midi,i+1] = trki,i+1 then

flag← bad; return false
return true

return false

NewMsg(i, p):

if i < [1, n] then return ⊥
c ← c + 1
pc ← p
ki,c ←$ NewMsg(i, pc)
if ki,c < K then
K[ki,c] ← r ; r ← r + 1

midc ← auth
return

Send(i, j, s):

if i < [1, n] ∨ ki,s = ⊥ then return ⊥
(k, tts) ←$ TagGen(i, j, ps , ki,s)
((mid, ttp), ttr) ←$ Svr-Process(PT, i, j, tts)
PT[mid] ← ttp ; S[mid] ← s ; SK[mid] ← k

if mids = auth then WasSent(i, j, mid, ps) ← true
else WasFwd(i, j, mids , mid, ps) ← true
if j ∈ [1, n] then
c ← c + 1
pc ← ps
kj,c ← RecMsg(k, i, j, pc , ttr)
WasRec(i, j, mid, ps) ← true
midc ← mid

return ttr
return (ttr , k)

SendMal(i, j, k, p, tts):

if i ∈ [1, n] then return ⊥
((mid, ttp), ttr) ←$ Svr-Process(PT, i, j, tts)
PT[mid] ← ttp
if j ∈ [1, n] then
k ← RecMsg(k, p, ttr)
if k , ⊥ then
c ← c + 1
pc ← p
kj,c ← k

WasRec(i, j, mid, p) ← true
midc ← mid

return ttr

Figure 16: Game hop for path trace unforgeability.

• Case 2:(
j = 1 ∧ (WasSent(tr1, tr2,mid1,2, p∗) = false

)
For tr1 to be added to the trace, we know PT[mid1,2] is

populated and has tr1 as the sender. Given the oracles in

our game, the only way to populate PT with tr1 ∈ [1,n] as
sender is through the honest send oracle SendMal which
is associated with an argument of counter S[mid1,2] = s ,
sending plaintext ps . There are two subcases: (Case 2a) ps ,
p∗, or (Case 2b) ps = p∗. In both cases, we consider k ←
SK[mid1,2].

• Case 2a: ps , p∗

We know from the execution of Send that Fk (ps) =
mid1,2. We also know from the unrolled execution of

Svr-Trace that Ftrk1,2
(p∗) = mid1,2. This gives us the

collision, (k, ps), (trk1,2, p∗).

• Case 2b: ps = p∗

We will show that trk1,2 , k leading to the collision

(k, p∗), (trk1,2, p∗). Suppose trk1,2 = k. We know that

from the execution of Send, the ciphertext ct1,2 stored in
PT[mid1,2] is created as EncH (k)(ktr1,s). We also know

that since entries are never overwritten, that ciphertext

remains.

We know ktr1,s is set, as that is a prerequisite of

calling Send. Since

WasSent(tr1, tr2,mid1,2, p∗) = false ,

mids , auth from the condition in Send. This implies

mids and, by extension, ktr1,s were not set in NewMsg.
The only other place ktr1,s can be set is following a

successful RecMsg from either Send or SendMal. As in
Case 1, this implies that the corresponding identifier in

PT is populated with tr1 as the sender, PT[Fktr
1
,s (p
∗)].

Thus, during traceback, if trk1,2 = k, then ct1,2 would
be decrypted as ktr1,s and the traceback would not stop

at tr1 since PT[Fktr
1
,s (p
∗)] is populated. All this means

that trk1,2 , k and the two keys collide on p∗.

• Case 3:(
j = τ ∧ WasRec(trτ−1, trτ ,midτ−1,τ , p∗) = false

)
To be last on a trace, trτ must be the reporting user i∗,

reporting ki∗,c∗ . From the oracle structure, the tracing key,

ki∗,c∗ , is set following a successful RecMsg in either Send or

SendMal, at which point

WasRec(Uτ−1, trτ ,midτ−1,τ , pc∗) ← true

for some Uτ−1 where pc∗ = p∗. Since midτ−1,τ is only set

once in PT, the identities Uτ−1 = trτ−1 and this case is im-

possible.

• Case 4:(
1 < j < τ ∧ WasFwd(tri−1, tri ,midi−1,i ,midi,i+1, p∗) = false

)

Same as in Case 2, for tri to be added to the trace, we

know PT[midi,i+1] is populated and has tri as the sender.

Given the oracles in our game, the only way to populate PT
with tri ∈ [1,n] as sender is through the honest send oracle

SendMal which is associated with an argument of counter

S[midi,i+1] = s , sending plaintext ps . Again, there are two
subcases: (Case 4a) ps , p∗, or (Case 4b) ps = p∗. In both

cases, we consider k ← SK[midi,i+1].

• Case 4a: ps , p∗

Case 4a mirrors Case 2a. We know from the execution

of Send that Fk (ps) = midi,i+1. We also know from

the unrolled execution of Svr-Trace that Ftrki,i+1 (p
∗) =

midi,i+1. This gives us the collision, (k, ps), (trki,i+1, p∗).

• Case 4b: ps = p∗

We will further consider two subsubcases. If trki,i+1 ,
k, we have the trivial collision, (k, p∗), (trki,i+1, p∗).
Now consider the case trki,i+1 = k. This subsubcase
corresponds exactly to the problematic case set apart

by flag
2
. We know that from the execution of Send,

cti,i+1 = EncH (k)(ktri ,s) is stored in PT[midi,i+1]. Let
us examine where ktri ,s was set. Since

WasFwd(tri−1, tri ,midi−1,i ,midi,i+1, ps) = false,

then it would have been set in the else statement of

Send, this implies the if statement was followed and

therefore mids = auth. This in turn means that ktri ,s
was set in NewMsg.

Next, consider the unrolled traceback. Since trki,i+1 =
k, the ciphertext cti,i+1 will decrypt to trki−1,i = ktri ,s .
Next, Fktri ,s (p

∗) = midi−1,i leads to next step of trace-

back (also implying that midi−1,i = mids). This PRF
evaluation would have been handled by a random func-

tion in G2. Thus, in G2, the probability flag
2
is set to

bad is bounded by the probability that a call to Send
or SendMal populated the mid corresponding to this

random value,

Pr [G2 sets bad2] ≤
qs + qsm

2
n .

This concludes the case analysis and gives us,

Pr [G1⇒ true] ≤ AdvcrF (C) ,

completing the proof.

□

C CONFIDENTIALITY AND
ACCOUNTABILITY FOR TREE
TRACEBACK

Here we formalize security goals for tree traceback. We start with

confidentiality notions which are essentially the same as those

for path traceback. The main distinction is that clients in our tree

traceback scheme have state (a set of counters). We add to the

confidentiality notions from Section 5.1 the ability for the adversary

to drive the honest client to an arbitrary state before submitting

challenge queries. The confidentiality games for tree traceback are

given in Figure 17. The unforgeability game remains largely the

PTreeCONF
A,b
MT

:

b′←$ AChal

return b′

NewClientState(U, mid, k):

gk←$ {0, 1}n

tmdU,mid ← (k, gk)

CTRU [tmdU,mid] ← 0

Chal(U1, U2, mid, p):

if tmdU
1
,mid = ⊥ then return ⊥

(k, tt1s) ←$ TagGen(CTRU
1
, U1, U2, p, tmdU

1
,mid)

tt0s ←$ {0, 1}len(tts)

return ttbs

UTreeCONF
A,b
MT

:

b′←$ AChal

return b′

NewClientState(U, mid, k):

gk←$ {0, 1}n

tmdU,mid ← (k, gk)

CTRU [tmdU,mid] ← 0

Chal(st, U1, U2, mid, p):

if tmdU
1
,mid = ⊥ then return ⊥

tmd0 ← tmdU
1
,mid

tmd1←$ NewMsg(U1, p)
(k′, tts) ←$ TagGen(CTRU

1
, U1, U2, p, tmdb)

((mid, ttp), tt
′
r) ← Svr-Process(st, U1, U2, tts)

return (k′, tt′r)

Figure 17: Notions for (top) platform tree trace confidentiality and
(bottom) user tree trace confidentiality.

same, given in Figure 18. We add a recursive predicate check on all

subtrees returned in the trace. Furthermore, the WasRec predicate
is set even if a received message was not accepted. This captures

the fact that a message will be traced as sent to a user regardless of

whether the message was accepted.

C.1 Platform Trace Confidentiality
Theorem 4. LetMT be the message tracing scheme for tree trace-

back defined in Figure 6 using hash functionH . Then ifH is modeled
as a random oracle, for any PTreeCONF adversaryA that makes at
most qns new client state queries and q

ch
challenge queries, we give

adversary B and C such that

Advp-tree-conf
MT

(A) ≤ AdvprfF ,qns+qch
(B) + Advror-cpa

E,qch
(C) +

q2
ns

2
n

where if A runs in time T , then B and C run in time T ′ ≈ T and
make at most 3q

ch
oracle queries.

Proof sketch: The proof proceeds with the same strategy as for

path traceback. The first transition replaces the PRF executions with

executions of a random function, where we can bound the distin-

guishing advantage by the PRF security of F since the PRF keys are

random and not revealed to the adversary. There is a subtlety here

that since the generator can be reused across multiple challenge

oracle calls (with an incremented counter), it can be distinguished

from random if a generator is every resampled. Thus, we include a

term bounding the low probability event of a generator resampling

collision. The second transition replaces calls to the encryption

algorithm with sampling random bits. After these transitions, the

sender trace tag output from the challenge oracle is amid which is

the output of a random function, and three ciphertexts which are

random bit strings.

C.2 User Trace Confidentiality
Theorem 5. LetMT be the message tracing scheme for tree trace-

back defined in Figure 6. For any UTreeCONF adversary A that
makes at most qns new client state queries and q

ch
challenge queries,

we give adversary B such that

Advp-tree-conf
MT

(A) ≤ 2AdvprfF ,qns+qch
(B) +

q2
ns

2
n−1

where ifA runs in timeT , then B runs in timeT ′ ≈ T and makes at
most 2q

ch
oracle queries.

Proof sketch: The adversary’s view includes the recipient trace

tag and the tracing key. The recipient trace tag is made up of a

message identifier, sender key share ciphertext, and platform key

share. The tracing key is dependent on the challenge bit chosen

generator, and so by extension the message identifier and sender

key share ciphertext are as well, since they are derived as functions

of the tracing key. We use the PRF security of F to transition to an

intermediate game where the tracing key is derived from a random

function. Similar to as in the sketch above for platform trace confi-

dentiality, since generators are reused across calls to the challenge

oracle (with an incremented counter), they can be distinguished if

a generator is resampled. Thus, we include a term bounding the

low probability event of a generator resampling collision.

C.3 Trace Unforgeability
Theorem 6. LetMT be the message tracing scheme for tree trace-

back defined in Figure 6. Then, for any TreeUNF adversary A that
makes at most qnm new message queries, qs send queries, and qsm
malicious send queries, we give adversary B such that

Advtree-unf
MT,n (A) ≤ AdvcrF (B) +

(qnm + qs + qsm)
2

2
n

where if A runs in time T , then B runs in time T ′ ≈ T .

Proof sketch: The proof strategy is the same as in trace unforge-

ability for path traceback. We will perform a case analysis of the

three winning conditions of the security game and show that in

each one, we will either be able to show a collision of F or can show

that it is a low probability event by the PRF security of F .

• Case 1: honest root did not author message

WasSent(tr0, tr1,mid0,1, p∗) = false

For mid0,1 to be added to the trace, we know PT[mid0,1] is
populated and has tr0 as the sender. Given the oracles in

our game, the only way to populate PT with tr0 ∈ [1,n] as
sender is through the honest send oracle SendMalwhich was

called with a message id counter s indicating sending plaintext
ps . There are two subcases: (Case 2a) ps , p∗, or (Case 2b)
ps = p∗.

TreeUNF
A
MT,n :

c ← 0

(i∗, p∗, tmd∗, c∗) ←$ AO

if i∗ ∈ [1, n] then p∗ ← pc∗ ; tmd∗ ← tmdi∗,c∗
tr0, clist0 ← Svr-Trace(PT, i∗, p∗, tmd∗)

for (mid0,1, tr1, clist1) ∈ clist0 do
if

(
tr0 ∈ [1, n] ∧ WasSent(tr0, tr1, mid0,1, p∗) = false

)
then return true

if check_tree(tr0, mid0,1, tr1, clist1) then return true
return false

check_tree(tr):

(tri−1, midi−1,i , tri , clisti) ← tr

if clisti = ∅ then
if

(
tri ∈ [1, n] ∧ WasRec(tri−1, tri , midi , p∗) = false

)
then return true

for (midi,i+1, tri+1, clisti+1) ∈ clisti do
if

(
tri ∈ [1, n] ∧ WasFwd(tri , tri+1, midi−1,i , midi,i+1, p∗) = false

)
then return true

if check_tree(tri , midi,i+1, tri+1, clisti+1) then return true
return false

NewMsg(i, p):

if i < [1, n] then return ⊥
c ← c + 1
pc ← p
tmdi,c ←$ NewMsg(i, pc)
midc ← auth
return

Send(i, j, s):

if i < [1, n] ∨ tmdi,s = ⊥ then return ⊥
(k, tts) ←$ TagGen(CTRi , i, j, ps , tmdi,s)

((mid, ttp), ttr) ←$ Svr-Process(PT, i, j, tts)
PT[mid] ← ttp
if mids = auth then WasSent(i, j, mid, ps) ← true
else WasFwd(i, j, mids , mid, ps) ← true
if j ∈ [1, n] then
c ← c + 1
pc ← ps
tmdj,c ← RecMsg(k, i, j, pc , ttr)
WasRec(i, j, mid, ps) ← true
midc ← mid

return ttr
return (ttr , k)

SendMal(i, j, k, p, tts):

if i ∈ [1, n] then return ⊥
((mid, ttp), ttr) ←$ Svr-Process(PT, i, j, tts)
PT[mid] ← ttp
if j ∈ [1, n] then
WasRec(i, j, mid, p) ← true
tmd ← RecMsg(k, p, ttr)
if tmd , ⊥ then
c ← c + 1
pc ← p
tmdj,c ← tmd

midc ← mid

return ttr

Figure 18: Trace unforgeability security game for tree traceback.

• Case 1a: ps , p∗

We consider the tracing key generated during tag genera-

tion in the oracle call; call this k0,1. We will also consider

the tracing key used in traceback to include mid0,1 in
the trace, call this trk0,1. We know from the execution

of Send that Fk0,1 (ps) = mid0,1. We also know from

the execution of Svr-Trace that for mid0,1 to have been

included in the trace, there must have been a tracing

key trk0,1 used such that Ftrk0,1
(p∗) = mid0,1. This

constitutes a collision.

• Case 1b: ps = p∗

For tr0 to have been identified as the root of the trace,

there must have been some midb that had tr0 as the
sender. The root identifying condition is either that the

escrowed tracing key evaluates to an invalid mid or

that the current tracing key is not well-formed with

respect to the escrowed generator. Since tr0 is honest,
we can rule out the second case, and the first case would

only occur if tr0 was the author of the message — since

our oracles do not make it possible for an honest user

to forward a message that was not received from the

server and accepted by RecMsg. So tr0 is the author of
a s ′ counter associated with p∗. Any call to Send of s ′

would result in the WasSent predicate being sent to true
since s ′ was authored. Thus, s , s ′. This means that

either the generator for s and the generator for s ′ collide
on a tracing key, the tracing key from s and the tracing

key from s ′ collide on mid0,1, or the generators are the
same for s and s ′. The last case we can bound as a low

probability event.

• Case 2: honest leaf did not receive message

WasRec(tri−1, tri ,midi−1,i , p∗) = false

To be added to the trace, it must be thatmidi−1,i in PT con-
tained tri−1 as sender and tri as the recipient. From our oracle

construction, the only way for a pair of users to be added to PT
is through the Send or SendMal oracles, which both set the

WasRec predicate with plaintext p input to the oracle. In which
case, if p∗ = p, the WasRec would have been true. Therefore,
p∗ , p and there exists a collision with the tracing key used

in traceback trk,p∗ and the tracing key used in the oracle k,p
on midi−1,i .

• Case 3: internal node did not forward message

WasFwd(tri , tri+1,midi−1,i ,midi,i+1, p∗) = false

Same as in Case 1, for midi,i+1 to be added to the trace,

we know PT[midi,i+1] is populated and has tri as the sender.
Given the oracles in our game, the only way to populate

PT with tri ∈ [1,n] as sender is through the honest send

oracle SendMal which was called with a message id counter

s indicating sending plaintext ps . There are two subcases:

(Case 2a) ps , p∗, or (Case 2b) ps = p∗.

• Case 3a: ps , p∗

We consider the tracing key generated during tag gener-

ation in the oracle call; call this ki,i+1. We will also con-

sider the tracing key used in traceback to includemid0,1
in the trace, call this trki,i+1. We know from the execu-

tion of Send that Fki,i+1 (ps) = midi,i+1. We also know

from the execution of Svr-Trace that formidi,i+1 to have

been included in the trace, there must have been a trac-

ing key trki,i+1 used such that Ftrki,i+1 (p
∗) = midi,i+1.

This constitutes a collision.

• Case 3b: ps = p∗

We will further consider two subsubcases. Ifmidi−1,i =
mids , then since the WasFwd was not set to true, we can
infer that s was authored by tri and importantly, gk was

sampled randomly. If midi−1,i , mids , then we can in-

fer gk was the hashed output of the key shares provided

formids , which importantly, likely differ from the key

shares provided by midi−1,i created gk ′. This means

that there is a collision between gk,ctr and gk ′,ctr ′

to ki,i+1, a collision between ki,i+1,p∗ and trki,i+1,p∗

tomidi,i+1, or gk and gk ′ are the same which we can

bound to be low probability.

	Abstract
	1 Introduction
	2 Setting and Goals
	3 Tracing Schemes
	4 Path Traceback
	5 Security of Path Traceback
	5.1 Confidentiality
	5.2 Accountability

	6 Tree Traceback
	7 Implementation and Evaluation
	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Confidentiality Proof
	A.1 Platform Trace Confidentiality
	A.2 User Trace Confidentiality

	B Accountability Proof
	C Confidentiality and Accountability for Tree Traceback
	C.1 Platform Trace Confidentiality
	C.2 User Trace Confidentiality
	C.3 Trace Unforgeability

